Organizers of TEAM 2014 Conference:

- Kecskemét College, Faculty of Mechanical Engineering and Automation, Hungary
- International TEAM Society

The conference is organized under the auspices of the International TEAM Society:

- Kecskemét College, Faculty of Mechanical Engineering and Automation (GAMF), Kecskemét, Hungary
- University of Applied Sciences of Slavonski Brod, Slavonski Brod, Croatia
- Mechanical Engineering Faculty in Slavonski Brod, Josip Juraj Strossmayer University of Osijek, Slavonski Brod, Croatia
- Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Trnava, Slovakia
- Faculty of Manufacturing Technologies with seat in Prešov, Technical University of Košice, Slovakia
All papers are reviewed.

The authors are only responsible for the accuracy and contents of all published material. The Editors do not accept any liability for the accuracy of articles, or responsibility for mistakes (editorial or typographical), nor for any consequences that may arise from them.

Publisher: Kecskemét College, Faculty of Mechanical Engineering and Automation
Copyright: © Kecskemét College
Editor in Chief: Andrea Ádámné Major
Editors: Lóránt Kovács, Zsolt Csaba Johanyák, Róbert Pap-Szigeti
Volume VI
Number 1
Year 2014
Pages 1-499
Scientific Committee Chairman

KOVÁCS, Lóránt, Assoc. Prof., Ing., PhD., Vice-dean for science

Scientific Committee Members

ÁDÁMNÉ MAJOR, Andrea, Kecskemét College, HU
AILER, Piroska, Kecskemét College, HU
BÁRTA, Jozef, FMST in Tnava, SK
BARTOLOVIĆ, Višnja, VUSB Slavonski Brod, HR
BENKOVIĆ-LAČIĆ, Teuta, University of Applied Sciences Slavonski Brod, HR
BENGÖ, Pavel, FEMT - Technical University in Zvolen, SK
BOŠNJAKOVIĆ, Mladen, VUSB Slavonski Brod, HR
CAR, Zlatan, TF - University of Rijeka, HR
ČEP, Robert, ŠB - TU Ostrava, CZ
CHATTOPADHYAYA, Somnath, Indian School of Mines, Dhanbad, IN

Dimkow, Svetoslav, Technical University, Sofia, BG
DURAKBASA, Numan M., Vienna University of Technology, A

DYNA, Jozef, Institute of Geonics AS CR, CZ
GALETA, Tomislav, MEFSB - University of Osijek, HR
GUBELJAK, Nenad, FS - University of Maribor, SLO
GUBERAC, Vlado, FA - University of Osijek, HR
GYENGE, Csaba, Technical University of Cluj-Napoca, RO
HADZIKADUNIC, Fuad, University of Zenica, BIH
HATALA, Michal, FVT TUKE, SK
HERZOG, Michael, TH Wildau, D
HLOCH, Sergej, FVT TuKE, SK
HODOLIČ, Janko, FTN - University of Novi Sad, RS
HOLESOVSKÝ, František, FPTM Uni J. E. Purkyně Ústí Nad Labem, CZ
IVANDIĆ, Željko, MEFSB - University of Osijek, HR
JOSIPOVIC, Marko, Agricultural Institute Osijek, HR
KADNÁR, Milan, Slovak Agriculture University Nitra, SK
KLADARIĆ, Ivica, MEFSB - University of Osijek, HR
KJAJIN, Milan, MEFSB - University of Osijek, HR
KOVÁCS, Lóránt, Kecskemét College, HU
KOZAK, Dražan, MEFSB - University of Osijek, HR
LACKOVIĆ, Ivica, University of Applied Sciences Slavonski Brod, HR
LEE, Ho-Sung, Korea Aerospace Research Institute, Daejun, KR
LIPÓCZINÉ CSABA, Sarolta, Kecskemét College, HU
LISKA, János, Kecskemét College, HU
MAGLIĆ, Leon, MEFSB - University of Osijek, HR
MARKOVIĆ, Monika, Faculty of agriculture, UNI Osijek, HR
MARÔNEK, Milan, FMST in Tmava, SK
MATANOVIĆ, Damir, FE - University of Osijek, HR
MIKLOVIĆ, Marin, University North Varaždin, HR
MIROSAVLJEVIĆ, Krunoslav, VUSB Slavonski Brod, HR
MLÁDKOVÁ, Ludmila, University of Economics, Prague, CZ
MODRÁK, Vladimír, FVT TUKE, SK
MONKA, Peter, FVT TUKE, SK
MILKOVÁ, Katarina, FVT TUKE, SK
MULLER, Miroslav, Czech university of life sciences, CZ
NOVÁK MARCINČIN, Jozef, FVT TUKE, SK
OHLÍDAL, Miloslav, SF VÚT Brno, CZ
PAŠKO, Ján, FVT TUKE, SK
PAVIĆ, Zlatko, MEFSB - University of Osijek, HR
PETÓ, Judit, Kecskemét College, HU
PETROPOULOS, George, University of Thessaly, GR
PIŠTORA, Jaromir, VŠB - TU Ostrava, CZ
PREINER, Darko, Faculty of agriculture, Uni Zagreb, HR
RAOS, Pero, MEFSB - University of Osijek, HR
RUGGIERO, Alessandro, University of Salerno, I
RUŽBARSKÝ, Juraj, FVT TUKE, SK
SAMARDŽIĆ, Ivan, MEFSB - University of Osijek, HR
ŠARIĆ, Tomislav, MEFSB - University of Osijek, HR
SEDMAK, Aleksandar, MF Uni Belgrade, RS
SEGOTA, Suzana, Ruder Boskovic Institute, HR
SENNAROĞLU, Bahar, Marmara University, TR
ŠERČER, Mladen, FAMENA - University of Zagreb, HR
SHARMA, Vinay, Birla Institute of Technology, Mesra, IN
ŠIMUNOVIĆ, Goran, MEFSB - University of Osijek, HR
ŠIMUNOVIĆ, Katica, mefsb uni osijek, HR
ŠOSTARIĆ, Jasna, PFOS - University of Osijek, HR
STOIĆ, Antun, MEFSB Slavonski Brod, HR
ŠUGÁR, Peter, FMST in TRNAVA, SK
SURZENKOVA, Andrei, Tallinn University of Technology, EE
TÓTH, Ákos, Kecskemét College, HU
TOZAN, Hakan, Turkish Naval Academy, Istanbul, TR
TRAUSSNIGG, Udo, Campus 02 TU GRAZ, A
TROPŠA, Vlado, VEL Varaždin, HR
VÁCLAVIK, Vojtech, VŠB - TU Ostrava, CZ
VAJNAI, Tibor, Kecskemét College, HU
VALIČEK, Jan, VŠB - TU Ostrava, CZ
VASILKO, Karol, FVT TUKE, SK
VAYVAY, Özalp, Marmara University, Istanbul, TR
VINAY, Sharma, Birla Institute of Technology, IN
VUKELIĆ, Djordje, FTN Uni Novi Sad, RS
YASHAR, Javadi, Islamic Azad University - Semnan Branch, IR
ŽIVIĆ, Marija, MEFSB - University of Osijek, HR

Organising Committee Chairman

JOHANYÁK, Zsolt Csaba, Prof., PhD.

Organising Committee Members

HLOCH, Sergeyj, FVT Technical University of Košice, SK
KOZAK, Drazan, MEFšb University of Osijek, HR
JOHANYÁK, Zsolt Csaba, Kecskemé College, HU
LÍSKA, Katalin, Kecskemé College, HU
TÓTH, Ákos, Kecskemé College, HU
Acknowledgement

The conference has been supported by
Knorr-Bremse Fékrendszer Kft.
Phoenix-Mecano Kft.
Szimikron Ipari Kft.
Kunplast-Karsai Műszaki Műanyagipari Kft.
Linamar Kft.
Diákhitel

The support is gratefully acknowledged.
TABLE OF CONTENT

Plenary session
Antun Stoić, Tomislav Palatinuš, Borut Kosec, Miroslav Duspara and Marija Stoić: The Effects of Life Cycle Management of Abrasives on sustainable WJ Cutting ... 14

Krunoslav Mirosvljević, Davor Požežanac-Hajić, Slavica Antunovic and Teuta Benković-Lačić: Modern Application of UV-VIS Spectroscopy in Agriculture .. 20

György Várallyay:
Environmental Aspects of Soil Management and Moisture Control ... 26

Agriculture and Horticulture - Papers
Monika Marković, Jasna Soštaric, Marko Josipović, Dragutin Petošić, Ivan Šimunić and Vladimir Zebec:
Implementation of Irrigation Scheduling Based on Monitoring of Soil Moisture Content in extreme Weather Conditions (Invited Paper) ... 34

Andrija Alković, Teuta Benković-Lačić, Robert Benković and Krunoslav Mirosvljević:
The Influence of Pruning on Vine Yield (Vitis Vinifera L.) ... 38

Ferenc Baglys, Endre Pölös and Csaba Szabó:
The Impact of different Rooting Media in the Propagation of some Grape Varieties .. 40

Bozica Japundžić-Palenkić, Ivana Vukjoja, Matija Japundžić and Nataša Romanjek-Fajdetic:
Pea (Pisum Sativum L.) Seedlings Properties under Influence of different Temperatures 43

Marko Martinović, Tomislav Cosić and Ivica Lacković:
Recycling and Disposal of electronic Waste (Invited Paper) ... 48

Viktor József Vojнич, Endre Pölös and András Palkovics:
Biological Plant Protection of Indian Tobacco (Lobelia Inflata L.) ... 54

Viktor József Vojнич, Endre Pölös, Judit Pető, Attila Hüvely and András Palkovics:
The total Alkaloid Production of Indian Tobacco (Lobelia Inflata L.) in Open Field Conditions 56

Agriculture and Horticulture - Posters
Ljiljana Božić-Őstojić, Slavica Antunović, Branimir Vujčić and Mirjana Martić:
Cognisation and Agricultural Producers Opinion on new Law Regulations in the Field of Plant Protection
in Eastern Croatia .. 59

Blanka Buzetzký:
Soil Moisture Monitoring between the Danube and the Tisza River .. 64

Anikó Czinege:
The Study of the Vigor of the Rootstocks – Plum Variety Combinations .. 68

Anikó Czinege:
The Study of the Yield of the Rootstock and Plum Variety Combinations .. 71

Eleonóra Kecskés-Nagy and Péter Sembery:
Reduction of DON-Toxin Content IN Wheat .. 74

Judit Pető, Attila Hüvely and Imre Cserni:
Plantation Programs and their Observations in the South-Eastern Hungarian Region 78

Bojan Stipešević, Bojana Brozović, Danijel Jug, Irena Jug, Ljubica Ranogajec and Davor Šego:
Economic Comparison of different Cropping Systems for Niger (Guizotia abyssinica) in Croatia 81

Zsuzsanna Tóthné Taskovics, Judit Pető, Attila Hüvely and András Kovács:
The Effect of some Plant Conditioning Materials on the Quality and Quantity of Green Pepper 86

Zsuzsa Turi-Farkas and Dezso Kovács:
Propagation of Taxus Baccata .. 89

Zsuzsa Turi-Farkas and Zoltán Pádár:
Analysis of Growth and Age of urban mature Trees ... 93

Computer and Information Technology - Papers
László Gyöngyösi:
Quantum Computing (Invited Presentation) ... 98

Peter Nagy and Peter Tasnádi:
Interaction-free Measurements .. 99

Marko Martinović, Dino Lovaković and Tomislav Cosić:
Network Security Issues in Regard to OSI Reference Model Layers .. 105

Istvan Pinter, Lorant Kovacs, Andras Olah, Rajmund Drenyovszki, David Tisza and Kalman Tornai:
On-line Change Point Detection in Household’s Electricity Power Consumption Data Series for Smart Grid Applications ... 108

Vedran Novoselac and Zlatko Pavči:
Outlier Detection in Experimental Data using a modified Expectation Maximization Algorithm 112

Zlatko Pavči and Vedran Novoselac:
Jensen’s and Hermite-Hadamard’s Inequality ... 116

Zlatko Pavči, Maja Ćuletić Ćondrić and Veljka Žugec:
Power and Logarithmic Means ... 120
Bence Koszteczky and Gyula Simon:
Intrusion Detection System with Sensor Networks .. 124
Gábor Kátai-Urbán, Ferenc Koszna and Zoltán Megyesi:
Omnidirectional Camera Calibration .. 129
Rajmund Drenyovszki, Lóránt Kovács, Bence Csák and Krisztian Bárseny:
GPS Based Vehicle Trajectory Prediction and Error Analysis ... 134
Zénó Dömötör, Ambros Köházi-Kis and Bence Csák:
Automatic Li-ion Battery Test System .. 141
József Osztényi, Rafael Alvarez Gil, Kálmán Bolla, Edit Csizmás, Csaba Fábián, Lóránt Kovács, Tamás Kovács, Krisztian Medgyes and Tibor Vajnai:
The Parameter Estimation of the Link Performance Functions 146
Zlatko Pavic:
The Significance of the Convex Combination Center ... 150
Elvira Antal:
Optimization Questions in BitTorrent Communities ... 154
Zsolt Csaba Johanyák, Piroska Gyöngyi Ailer and László Göcs:
A simple Fuzzy Control Design for Series Hybrid Electric Vehicle 159

Computer and Information Technology - Posters
Rafael Pedro Alvarez Gil:
Kálmán Bolla, Tamás Kovács and Gábor Fazekas:
Trajectory Building Method for Autonomous Mobile Robots .. 170
Csaba Fábián, Edit Csizmás and Tibor Vajnai:
Modeling Uncertainty for stochastic Optimisation ... 174
Attila Véghe:
On free and nonfree Dirichlet-Voronoi Cells .. 179

Education - Papers
Ágnes Maródi, István Benedekf, Iván Devosa and Zsuzsa Buzás:
Teaching and Learning Music with the Aid of Digital Technology 186
Hrvoje Sivrić, Nebojša Zagorac and Kristijan Marić:
The Effect of selected motor Abilities on the Results in the athletic Discipline – Running Long Jump (Invited Paper) .. 190
Ágnes Maródi, Iván Devosa, István Benedekfi and Zsuzsanna Buzás:
ICT Tool for Education of European Citizenship. Educational Program for Spreading the Culture of the European Union Member Countries ... 194
Zoltán Senkei-Kis and Lilla Koltói:
Is it legal or illegal to use Torrents? – Views of Students of Library Science about Downloading .. 198
Mária Hercz, Lilla Koltói, Róbert Pap-Szigeti and Erika Tőrők:
Assessing Competencies of Freshmen: an On-line Measurement in the College 202
Maria Hercz, Lilla Koltói and Róbert Rigó:
Competences for the Success of Students Learning in Dual Training System: The Firms’ Voice .. 206
Erika Tőrők and Zsuzsanna Kovács:
Challenges and Opportunities in the Dual Training Model at Kecskemét College 211
Mihály Gőrbe:
Establishing new Course for the Education of Sensorsics at the GAMF faculty of Kecskemét College .. 216
Ildikó Szabó and Veronika Szinger:
Action Research-Based Innovation in Teachers’ Professional Development at Kecskemét College Teacher Training Faculty .. 223
Ildikó Szabó and Sarolta Lipóczki-Csabai:
Developing, Implementing and Piloting Interactive Teaching Resources in a European Context ... 227
Ágnes Horváth:
Value Ranking as a special Task for Students .. 232
Éva Ujlakyné Szűcs:
College Students’ Difficulties in Developing their Foreign Language Competences 237
Judit Hardi:
Metacognitive Strategies in EFL Vocabulary Learning ... 241
István Zsigmond:
Metacognitive Methods of Writing Development (Invited Paper) 248

Management - Papers
Milan Stanić and Ivana Martinović:
Calculation of Cost Fixed Assets .. 254
Akos Toth:
The Financial Crisis and its Effect on the Quality of Governance and the Financing of the Cultural Sector ... 259
Snežana Kirić, Tatjana Janovac, Aleksandar Sedmak and Branimir Jakić:
Research of Knowledge and Skills Effects on Achievement of Employees Aims (Invited Paper) ……………………………………………………………………………………264
Sanja Knežević and Maja Pelivan:
New Product - The Key Factor of Companies’ Development …….270
Michael Schwandt:
Statistical Analysis of Employee’s Knowledge about Risk Management – A Comparison of three Central Eastern European Countries (Invited Paper) ……………………………………………………………………………………………………274
Anita Kulaš and Lucija Kraljić:
The Importance of Investing in Education of Human Resources in Management ……………………………………………………………………………………………………281
Tibor Ferencyz:
Possibilities of Determining the Value of urban green Areas ……… 285

Management - Posters
Višnja Bartolović and Dajana Džeba:
The Representation of Business Ethics Topics in the Study Programmes at Higher Education Institutions in the Republic of Croatia ………
Mario Šokac, Željko Santosić, Tatjana Puškar, Siniša Mirković, Mirko Soković and Igor Budak:
Application of different Segmentation Approaches on CB-CT Images for the Reconstruction of 3D Model of Mandible405

Zlatko Pavić and Ana Bodolović:
Analytical Study of Stress ...410

Ratnesh Kumar, Bhabani Bora, Prashant Kumar and Somnath Chattopadhyaya:
Experimental and theoretical Investigation of Effect of Process Parameter on Temperature Development during Friction Stir Welding..414

József Danyi, Ferenc Végvári, Gábor Béres and Bertalan Kecskés:
Tube Expansion by elastic Medium ..420

Pál Lukács:
Recycling Possibilities of Process Residues from End of Life Vehicles (Invited Paper)..423

Stanislav Kotšmíd, Ján Marienčík, Pavel Beňo, Marián Minárík, Dražan Kozak and Pejo Konjatić:
Accuracy in the geometrical Characteristics Reduction Method of Step Shaft at Deflection Computing................428

Nedeljko Vukojević, Fuad Hadžikadunić and Nenad Gubeljak:
Diagnostics and Analysis of the Influence of Cracks on the Integrity of the Thick-walled Pressure Vessels434

Maja Čuletić Čondrić, Marija Stoić, Stipo Duspara and Slavko Zorica:
Measuring by using 3D Control Equipment ..440

Ravi Kumar, Somnath Chattopadhyaya, Anirudh Ghosh and Pedro Vilaca:
Thermal Modelling and Analysis of FSW: A Review...445

József Danyi, Ferenc Végvári, Gábor Béres and Bertalan Kecskés:
Deep-drawability of Tailor Welded Blanks ...452

Danijela Živojinović, Horia Dascău, Aleksandar Sedmak and Aleksandar Grbović:
Inegrity Assessment of a Structure made of two FSW T-Welds ..456

Zsolt Dugár, Péter Barkóczy, Gábor Béres, Dávid Kis and Gergő Antalicz:
Determination of recrystallization Temperature of varying Degrees formed Aluminium, by DMTA Technique462

Mechanical Engineering - Posters

Jozef Bárta, Milan Marônek, Ladislav Morović, Jozef Ertel:
Utilisation of optical 3D Scanning Methods in Measurement of Weld Joint Deformations ..465

Jozef Bárta, Milan Marônek, Miroslav Sahul and Jozef Ertel:
Influence of Laser Beam Welding Parameters on Weld Joints Microstructure of Duplex Steel469

Tomislav Baskaric, Mato Kokanovic, Drazan Kozak, Todor Ergic and Zeljko Ivandic:
Effect of Temperature Changes on the Function of the Electric Guitar ..472

Zdenko Cerin, Darko Damjanovic, Drazan Kozak and Zeljko Ivandic:
Analysis of Wind Influence to static Stability of the Eave Framework ...475

Katarina Knežević, Mladen Bošnjaković, Ivica Lacković and Igor Tidlačka:
Spending Ball or Roller Bearings depending on how the Rotation and Shape of the Load ...479

Pejo Konjatić, Filip Šakić, Dražan Kozak and Pavel Beňo:
Influence of Geometry of Pressure Vessel Nozzle Connection on Stress Intensity Factor ...483

Katalin Lískó, János Lískó and Roland Sándor:
Investigation Possibilities of Delamination at Drilling of Composite Materials ..488

Dejan Marić, Antonio Čavar, Željko Ivandic, Dražan Kozak and Ivan Samardžić:
Application of Vibro Methods in Practice for Reduction of residual Stresses ..492

Pero Raos, Josip Stojisic and Ante Pranić:
Using of Simulation Programs for the Injection Molding ...497
A SIMPLE FUZZY CONTROL DESIGN FOR SERIES HYBRID ELECTRIC VEHICLE

Zsolt Csaba Johanyák*, Piroska Gyöngyi Ailer and László Göcs

1Department of Information Technologies, Faculty of Mechanical Engineering and Automation, Kecskemét College, Hungary
2Department of Vehicle Technology, Faculty of Mechanical Engineering and Automation, Kecskemét College, Hungary

* Corresponding author e-mail: johanyak.csaba@gamf.kefo.hu

Abstract
This paper proposes a simple fuzzy control design for a hybrid electric vehicle with a series connected powertrain system. In course of the research a complex system model was used which consists of three main components, i.e. the driver modeling subsystem, the control subsystem, and the subsystem modeling the hybrid vehicle. The primary objective was to develop a controller that ensures a low level dissipation in case of a predefined driving cycle by controlling the electric motor, the internal combustion engine, and the generator. In order to minimize fuel consumption and to take into consideration some other requirements a complex cost function was defined as objective function for the tuning process. A hill climbing type optimization approach was used for the tuning of the system.

Keywords:
 fuzzy control, hybrid vehicle

1. Introduction
Hybrid electric vehicles (HEVs) have become commercially feasible products because they can combine some advantageous features of the conventional internal combustion engine vehicles (ICEVs), i.e. large driving range and rapid refueling, with the advantages of electric vehicles (EVs), i.e. low emission of harmful pollutants [4]. Although the development of EVs that ensure zero level emission is considered as the long term objective in medium term the development of HEVs is significantly motivated by the practical limits of the current battery and fuel cell technologies [16].

HEVs can be classified into four basic kinds: series [2][3], parallel [7][12][16][22], series-parallel [9], and complex [4]. In our research, we adopted the series hybrid concept owing to its simplicity. Its details are described in Section 2.

Computational intelligence based solutions have been applied for a wide range of problems like control [14][15][17], expert systems [5][19], risk assessment [13], decision making systems [20], etc.. The objective of this paper is to present a simple fuzzy control solution for a series HEV. The controller has to ensure a low level dissipation in case of a predefined driving cycle by controlling the electric motor, the internal combustion engine, and the generator. The proposed solution was tried using simulations with a complex vehicle system model created in Simulink.

The rest of this paper is organized as follows. Section 2 presents shortly the structure of the whole model. Section 3 introduces the main steps of the control system design. The simulation and performance evaluation results are presented in Section 4 and the conclusions are drawn in Section 5.

2. System structure

Fig. 1 shows the functional block diagram of the series HEV. Its key feature is that the ICE is coupled with the generator (G), which produces electricity used either for charging the battery (B) or for providing power for the electric motor (EM). The later also can be used for power generation in case of braking. The vehicle has pure electric propulsion. The link between fuel tank (FT) and ICE is hydraulic; between ICE and generator as well as between electric motor and transmission system (T) is mechanical, while the links between generator, battery and electric motor are electrical. This engine assisted EV concept makes possible an extended driving range that is comparable to the driving range of ICEVs [4].

Figure 1. Block diagram of the whole system

The architecture of the whole system created in Simulink is given in Fig. 2. The first block produces the reference speed values prescribed by the applied driving cycle. The second block (Driver) models the driver and is responsible for tracking the driving cycle. The third block (Fuzzy_Control_HV_2) contains the fuzzy control presented in the following sections and the fourth block (Hybrid_system_continuous) contains the...
A simple Fuzzy Control Design for Series Hybrid Electric Vehicle

series hybrid model. The first two blocks and the last block are described in [18]. The last three elements (right hand side) serve the visualization of the signals (see Fig. 8 and 9) and the cost function used for the evaluation of the control structure. Our study focuses on the third block; therefore the rest of this paper will be related only to this topic.

3. Fuzzy control system design

The Fuzzy-Control subsystem (block Fuzzy_Control_HV_2 in Fig. 2) implements the fuzzy logic using standard blocks from Matlab's Fuzzy Logic Toolbox, as well as some pre- and postprocessing operations that are necessary to ensure a normalized input to the fuzzy blocks and the transmission (further use of the normalized output of the fuzzy block).

3.1 Controller Inputs and Outputs

After the analysis of the vehicle model we chose the following characteristics as inputs of the control system:

- dir the movement direction of the car. Here the positive values indicate the forward movement, while the negative values indicate the reverse movement.
- acc a value belonging to the interval [0,1] indicating the position of the gas pedal.
- brk a value belonging to the interval [0,1] indicating the position of the brake pedal.
- X a vector with multiple components from which we use an indicator of the energy stored in the battery (E_b).

![Figure 2. Block diagram of the whole system](image)

![Figure 3. Block diagram of the control subsystem](image)
Similarly the outputs of the controller are:

- M_f the torque of the friction brake.
- q_e a value belonging to the interval $[0, 1]$ indicating the control input of the electric motor.
- q_m a value belonging to the interval $[0, 1]$ indicating the control input of the ICE.
- q_g a value belonging to the interval $[0, 1]$ indicating the control input of the generator.

3.2 Definition of the structure of the control subsystem

The block diagram of the fuzzy subsystem is shown in Fig. 3. The control subsystem contains two fuzzy logic controller blocks, i.e. a SISO (single input single output) and a SIMO (single input multiple output) fuzzy system.

The first fuzzy block controls the electric motor by the means of the q_e signal based on the actual values of the gas and brake pedal positions (acc_brk_sat). The second fuzzy block controls the ICE (q_m) and the generator (q_g) based on the relative state of charge of the battery (E_{brel}). The dir parameter defines the sign of the q_e signal through a product block.

The acceleration signal was needed by the next subsystem (series hybrid model) too. Therefore its value is led out through the bus creator block. The torque of the friction brake (M_f) is calculated from the saturated value of the brake signal. The constant values used in course of the calculations are presented in Table 1.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{\text{max_elek}}$</td>
<td>300</td>
<td>NM</td>
</tr>
<tr>
<td>brk_fact</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>$E_{\text{brel}}^{\text{max}}$</td>
<td>4.3×10^6</td>
<td>J</td>
</tr>
<tr>
<td>B_{max}</td>
<td>0.0014</td>
<td>kg/s</td>
</tr>
<tr>
<td>$\epsilon_{\text{CO}}^{\text{max}}$</td>
<td>4.5747×10^4</td>
<td>kg/s</td>
</tr>
<tr>
<td>$\epsilon_{\text{HC}}^{\text{max}}$</td>
<td>6.8620×10^4</td>
<td>kg/s</td>
</tr>
<tr>
<td>$\epsilon_{\text{NOx}}^{\text{max}}$</td>
<td>5.7907×10^4</td>
<td>kg/s</td>
</tr>
<tr>
<td>μ_{max}</td>
<td>2.7500</td>
<td>m/s2</td>
</tr>
</tbody>
</table>

3.3 Preprocessing Operations

In case of the first input (dir) we need only two discrete values that symbolize the forward (+1) and reverse (-1) movement of the vehicle. It is achieved with a sign block (see Fig. 3). In order to ensure an acceleration and a braking signal belonging to the $[0,1]$ interval saturation blocks are applied. Furthermore, supposing that the driver does not press at the same time the gas and the brake pedals we could aggregate the two signals taking the brake signal with negative sign. The result is also saturated to the $[-1,1]$ interval.

In case of the last input (E_{brel}) that was taken from the bus signal X we created a relative (normalized) value for it by dividing the actual value by the maximum possible value given as a constant parameter of the vehicle system. In order to avoid the possibility of functioning errors of the fuzzy blocks we had to ensure that the resulting relative values always belong to the unit interval. This demand was fulfilled by the application of a saturation block.

3.4 Operational Characteristics of the Fuzzy System

In case of both fuzzy blocks we started with Ruspiini type partitions and the parameters of the fuzzy sets were optimized for the cost function (1) using a simple hill climbing type algorithm. Further on only the characteristics of the resulting (optimized) fuzzy systems are going to be presented.

First Fuzzy System

In case of the first fuzzy system that controls the electric motor for both the antecedent and consequent universes of discourses we used trapezoid and triangle shaped membership functions (see Figs. 4~5). Partitions with six fuzzy sets were created in order to ensure a proper distinction between the braking and acceleration.
We used the conventional simple notation mode (linguistic values) for the three sets, i.e. NL (Negative Large), NM (Negative Medium), NS (Negative Small), PS (Positive Small), PM (Positive Medium), and PL (positive large) in case of both dimensions.

Second Fuzzy System
In case of the second fuzzy system that controls the ICE and the generator we used triangle and trapezoid shaped membership functions (see Figs. 6~7). We used the conventional simple notation mode for the three sets, i.e. Z (zero), PS (Positive Small), and PL (positive large) in case of both dimensions.

3.5 Rule Base
First Fuzzy System
The first fuzzy block is a SISO fuzzy system of which rule base contains the six rules presented in Table 2.

<table>
<thead>
<tr>
<th>Table 2. Rules of the first fuzzy block</th>
</tr>
</thead>
<tbody>
<tr>
<td>acc_brk_sat</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Second Fuzzy System
The second fuzzy block is a SIMO fuzzy system with two output dimensions. Its rule base contains the following three rules presented in Table 3.

<table>
<thead>
<tr>
<th>Table 3 Rules of the second fuzzy block</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{brel})</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

4. Simulation and performance evaluation
In order to minimize fuel consumption and to take into consideration some other requirements a complex cost function (1) was defined as objective function for the tuning process.

\[
J = \frac{1}{T} \int_0^T \left(\frac{B}{E_{max}} + \frac{e_{CO}}{e_{CO_{max}}} \right)^2 + \frac{e_{NOx}}{e_{NOx_{max}}}^2 + \left(\frac{\xi_j}{\xi_{j_{max}}} + \frac{E_{brel}}{E_{brel_{max}}} \right)^2 \, dt,
\]

where \(T \) is the simulation time, \(B \) is the fuel consumption of the ICE, \(e_{CO} \) is the CO emission of the ICE, \(e_{HC} \) is the HC emission of the ICE, \(e_{NOx} \) is the NOx emission of the ICE, \(\xi_j \) is the acceleration factor, \(E_{brel} \) is the battery energy level. All components of the cost function were taken into consideration with equal weights.

The simulation was carried out for \(T=10000 \) seconds. Figs. 8 and 9 show that the ICE was mainly used after \(t=2108 \) s when the state of charge (SOC) \(E_{brel} \) fell below 0.7. In long term (between 2108 s and 10000 s) the relative SOC was kept between 0.64 and 0.68, which ensures a charge sustainability of the system. Fig. 9 (third row) presents that the driver block and the first fuzzy control block ensures a good tracking of the predefined driving cycle. After an initial fluctuation the value of the cost function stabilized around 0.03. Its final value became 0.03091.
5. Conclusion

In this paper, a simple fuzzy logic based solution was presented for the controlling of the power management of a series hybrid vehicle. Our objective was to develop a controller that ensures a low level of harmful pollutant emission while the charge sustainability of the system is also ensured. To fulfill this demand a cost function was created and the parameters of the fuzzy control were optimized based on its value. In case of the applied driving cycle the developed system ensured a good solution. Further research will consider other options regarding the applied HEV type, interpolation based fuzzy inference techniques (e.g. [6][8][11]) and automatic rules base generation and optimization methods (e.g. [21][1]). The research on the optimal weights of different factors taken into consideration in equation (1) is also subject to further research work.

Acknowledgement

"TÁMOP-4.2.2.A-11/1/KONV-2012-0012: Basic research for the development of hybrid and electric vehicles - The Project is supported by the Hungarian Government and co-financed by the European Social Fund"

References

