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Abstract – The ability to predict mechanical properties of 
thermoplastic composites in order to satisfy the 
performance requirements is of great importance in 
course of the design. In this paper, a general method 
group for data driven fuzzy modeling and its application 
is presented. Two low complexity fuzzy models were 
generated for the prediction of Charpy impact strength 
and yield strength as a function of the percent amount of 
the components. The models take as input parameters the 
percentage of the nanotube and ABS 
 
Keywords:  thermoplastic composite, fuzzy modeling, 

LESFRI, RBE-DSS,  
 
 

I. INTRODUCTION 
 
In the 19. century polymers were used as synthetic 
substitute materials instead of raw materials. Nowadays 
polymers are very important materials; they are used for 
different purposes. The variety of plastics is enormous; 
however, in some cases there is no pure material to fulfill 
all the requirements. In these cases it is important to 
prepare the desired material by mixing pure polymeric 
materials with fullerenes in order to reach the desired 
mechanical properties. 
 
One type of fullerenes, the carbon nanotube is in the focus 
of the researchers of polymer blends in the last ten years 
[1][2]. Carbon nanotube-polymer composites are often 
used owing to the increase of the polymer’s conductivity 
[3][4][5] and decrease of its resistance. Thus electrostatic 
discharge can be avoided. It was also discovered that the 
mechanical properties (modulus, strength, etc.) can be 
enhanced by adding carbon nanotube to virgin polymer 
[6][7]. In addition, among other properties the thermal 
stability and fire resistance can be influenced favorably as 
well by using carbon nanotube [8][9][10]. 

The prediction of mechanical properties is of great 
importance in composite production. Soft computing 
techniques like fuzzy rule based systems (FRBS), artificial 
neural networks (ANN) and genetic programming (GP) 
have been applied successfully for modeling of different 
non-linear phenomena where one does not know the exact 
mathematical formula that describes the relation between 
the input and output variables of the model, but there exists 
human expertise or experimental data is available. 
 
The advantages of FRBSs can be summarized in the 
following points. 
 
1) They can incorporate human knowledge as well as 

knowledge induced from numerical data obtained by 
the observation of the original phenomena. 

 
2) The model is described by fuzzy rules that are easy 

interpretable and analyzable by humans. 
 
3) Each fuzzy rule represents a local model, which results 

in robustness and good approximation capability 
because the modification of a single parameter does 
not alter the whole model. 

 
4) A suitable initial parameter set determined by human 

experts can substantially speed up the training process. 
 
There is a broad literature reporting successful practical 
applications of FRBSs. Kovács and Kóczy [13] developed 
a fuzzy rule interpolation (FRI) based model for behaviour-
based control structures. Johanyák, Parthiban, and Sekaran 
[14] constructed fuzzy models for an anaerobic tapered 
fluidized bed reactor. Wong and Gedeon [15] as well as 
Johanyák and Kovács [16] developed  FRBSs for 
prediction of petrophisycal properties. Bla�i�  and I. Škrjanc 
[35] developed a fuzzy model based predictive control 
algorithm applicable for processes with strong nonlinear 
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Fig. 1. SEM micrograph of the fractured surface of the composite 
containing 1% nanotube, 90% ABS, and 9% PC 

 

 
 

Fig. 2. SEM micrograph of the fractured surface of the composite 
containing 1% nanotube, 10% ABS, and 89% PC 

dynamics and high transport delays. Hládek, Vaš� ák and 
Sin� ák [36] proposed a hierarchical multi agent control 
system based on rule based fuzzy system for pursuit-
evasion task. 
 
In this paper, we present the results of our research aiming 
the generation of fuzzy models in order to support the 
prediction of mechanical properties of thermoplastic 
composites as a function of the percent amount of the 
components. Two models were generated, one for Charpy 
impact strength and one for yield strength. Both models 
apply the percentage of the nanotube and ABS as input 
parameters. The amount of the third component 
(polycarbonate) is a dependent variable, therefore it was 
not used during the calculations. 
 
The rest of this paper is organized as follows. Section II. 
presents the experiments. Section III. introduces the 
methods and techniques used in course of the design and 
identification of the fuzzy model. The results are discussed 
in section IV. 
 

II. EXPERIMENTS 
 

In order to investigate variation of the Charpy impact 
strength (CIS) and yield strength (YS) of the composites in 
function of the component’s percent amount we created an 
incomplete full factorial experimental design. The 
incompleteness derived from the constraint that the sum of 
the component’s percent amount had to be 100%. 
 
The components were POLYMAN HH 3 also known as 
ABS, the Multiwall Carbon nanotube master batch (MB-
6015-00, Hyperion Catalyst, USA) and the polycarbonate 
(PC). The ABS and PC polymers were used as matrix 
materials. We defined three levels for the percent amount 
of the nanotube (0%, 1%, and 1.5%) and eleven levels in 
case of (0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 
90%, and 100%) ABS. The full factorial experiment plan 
contained 33 settings from which 30 were executable due 
to the incompatible levels (see the above mentioned 
constraints). Each setting was tried ten times. The 
experiments were carried out in random order. In course of 
the modeling the average value for each setting was taken 
into consideration as setting results. 
 
The mixing of polymers was carried out in melt to achieve 
homogeneous properties. We used a special mixing unit 
called Infinitely Variable Dynamic Shear Mixer (IDMX) 
[11] to produce blends. The mixing instrument consists of 
the dynamic unit and a satellite extruder. The extruder is a 
Collin Teach-Line E20T. The single screw extruder pumps 
the melt into the dynamic mixer. The mixer has its own 
drive and a screw feed section which takes the melt streams 
and conveys them into the mixer elements consisting of 
rotors and stators. The setup of the mixing elements 
generates high shear to give dispersive and distributive 
mixing of the components. The test pieces were injection 
molded by ARBURG Allrounder 270 U 350-70. The melt 

temperature was 260º C. The mould temperature was 40º 
C. 
 
In order to study the mechanical properties of the test 
pieces we broke them under liquid nitrogen. The yield 
strength was determined by an INSTRON 4482 equipment. 
The Charpy impact strength was determined as well using a 
swinging pendulum (Charpy pendulum).  
 
We also prepared scanning electron microscopic (SEM) 
pictures to investigate the fractured surface of the 
composites. A field-emission SEM (FESEM, Hitachi-
S4700) was applied for this task. SEM micrographs of the 
fractured sample composites containing carbon nanotube 
are shown in Fig. 1 and Fig. 2. The sample preparation was 
carried out in the same way as in [12]. The carbon 
nanotube can be seen on the fractured surfaces. It is 
important to emphasize that the distribution of the nanotube 
in the matrix material is more or less uniform. We did not 
find any sign of agglomerates in the materials.  
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Fig. 3. Sparse fuzzy rule base 
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Fig. 4. Linguistic term shifting 
 

III. FUZZY MODELING 
 

A. Fuzzy Inference 
 

In course of fuzzy modeling one can choose from a wide 
variety of inference methods. They can be divided into two 
main groups depending on their ability to cope with sparse 
rule bases. A fuzzy rule base is sparse (e.g. Fig. 3) when for 
some observations there is no rule that could be applied, 
i.e. there is no rule whose antecedent part would at least 
intersect the observation. Fig. 3 illustrates the two 
dimensional antecedent space of a sparse fuzzy rule base 
that contains three rules whose antecedents are represented 

by pyramids. In case of the observation { }** B,A  none of 
the rule antecedents intersects the observation. 
 
The members of the first group are the so called classical 
compositional methods like Zadeh’s [17], Mamdani’s [18] 
or Larsen’s [19] inference techniques. They require a full 
coverage of the input space by the known rules. 
 
The members of the second group can use a more compact 
representation of the knowledge incorporated in the rule 
base, they are capable to infer in sparse rule bases as well. 
This feature presents a large application potential in fuzzy 
control [34] as well. These methods determine the 
conclusion using approximation based reasoning, usually a 
kind of fuzzy rule interpolation (FRI) taking into 
consideration two or more rules situated in closer or wider 
neighborhood of the observation. These methods also form 
two subgroups, the so called one-step and two-step 
techniques. 
 
The one-step FRI techniques determine the conclusion 
directly from the observation and the rules taken into 
consideration. Here belongs e.g. the linear interpolation 
proposed by Kóczy and Hirota [20], the vague environment 
based reasoning FIVE developed by Kovács [21], or the 
IMUL method suggested by Wong, Tikk, Gedeon and 
Kóczy [22]. 

The two-step FRI methods follow the concept of 
Generalized Methodology of fuzzy rule interpolation (GM) 
developed by Baranyi Kóczy and Gedeon in [23]. In the 
first step they interpolate a new rule in the position of the 
observation and next they calculate the conclusion using a 
special single rule reasoning technique. Typical members 
of this group are the technique family suggested in [23], 
LESFRI published by Johanyák and Kovács in [24], IGRV 
developed by Huang and Shen [25], the transformation 
based technique published by Chen and Ko [37] as well as 
the polar cut based FRIPOC suggested by Johanyák and 
Kovács in [26]. 
 
B. LESFRI 
 

We chose LESFRI [24] as inference technique owing to its 
low computational complexity, its ability to preserve the 
characteristic shape type of a partition, and good practical 
experiences gathered in course of previous fuzzy modeling 
problems. 
 
Conform the concepts of GM LESFRI interpolates first a 
new rule in the position of the observation. The same 
position here means that in each antecedent dimension the 
reference point of the antecedent fuzzy set of the new rule 
will be identical with the reference point of the observation. 
The calculations are done independently in each antecedent 
dimension using the set interpolation technique FEAT-LS. 
FEAT-LS first shifts virtually all linguistic terms of the 
partition (see Fig. 4) in order to reach a coincidence 
between the reference point of the observation and the 
reference points of the shifted sets. The left and right flanks 
of the new set are determined separately. 
 
The next step of LESFRI is the compilation of an  
a-level set that contains all levels corresponding to the 
break-points of the shifted sets on the current (left or right) 
side. One calculates a characteristic point of the new set for 
each a-level so that the distances between the a-cut 
endpoints of the shifted sets and the new characteristic 
point to be minimal by the means of the weighted least 
squares methods. The weighting expresses that the 
linguistic terms situated originally in farther portions of the 
partition should have a weaker effect on the result than 
those situated originally in closer neighborhood of the 
observation. The rest of the set shape is determined by 
connecting the neighboring characteristic points with lines. 
After determining the shape of the antecedent sets of the 
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new rule one calculates the position (reference) point by 
the crisp Shepard interpolation [27], which calculates the 
new point as a weighted average of the reference points of 
the known rules’ consequents. Next the shape of the 
conclusion is determined using the same set interpolation 
technique as in the case of the antecedent sets. 
 
In the second step of LESFRI the conclusion is generated 
by a special revision technique called single rule reasoning 
based on the method of least squares (SURE-LS). Single 
rule reasoning can be applied when the reference points of 
an observation and the reference points of a rule antecedent 
coincide in all input dimensions. In such circumstances the 
conclusion is generated by a modification the rule 
consequent’s shape. This modification also called revision 
should be related to the similarity/dissimilarity of the 
observation and rule antecedent sets. However, the revision 
does not alter the reference point of the consequent set. 
 
SURE-LS applies an a-cut based approach for this task. It 
uses a set of a-levels compiled together by taking into 
consideration the break-point levels of all antecedent 
dimensions and the current consequent partition. The 
calculations are done separately for the left and right 
flanks. On each side for each level it calculates the 
weighted average of the distances between the endpoints of 
the a-cuts of the rule antecedent and the observation set. 
The weighting makes possible to take into consideration 
the different antecedent dimensions (input state variables) 
with different influence. 
 
The basic idea of the method is the conservation of the 
weighted average differences measured on the antecedent 
side. These differences are measured in horizontal direction 
and the revision results in an intermediate set or an array of 
points. The conclusion with the desired shape type is 
calculated from these applying the method of Least 
Squares. In cases when the rule antecedent fits the 
observation perfectly the conclusion will be identical with 
the consequent of the rule. 
 

IV. FUZZY MODEL IDENTIFICATION 

 

In course of fuzzy model identification one determines the 
structure of the rule base, the number of rules as well as the 
membership function types and parameters of the fuzzy 
sets referenced in the rules. One can find a wide variety of 
applicable methods in the literature. The selection first 
depends on the demand whether a full coverage of the input 
space is required or not, which on its turn lays on the 
chosen inference technique. In our case we chose LESFRI 
for fuzzy reasoning and therefore a low complexity sparse 
rule base containing only the relevant rules is sufficient. 
One can produce a sparse fuzzy rule base basically in two 
ways. The first (e.g. [28]) starts from a completely covering 
rule base and reduces the number of the rules dropping out 
the non relevant rules or merging the similar rules. 

The methods following the second way produce a rule base 
directly that does not cover fully the antecedent space. 
Usually they follow one of the following four approaches. 
 
1) Try to identify the so-called optimal fuzzy rules (e.g. 

[29]). 
 
2) Extend the rule base by applying the concept of Rule 

Base Extension (e.g. [30]). 
 
3) Create the starting rules based on fuzzy clustering (e.g. 

[31]). 
 
4) Apply evolutionary algorithms (e.g. [32],[33]) for the 

identification of the parameters. 
 
 
C. RBE-DSS 
 

The rule base extension using default set shapes (RBE-
DSS) [30] proved to be a useful tool for the solution of 
fuzzy model identification problems when the model 
should be generated based on input-output data directly 
generated from the underlying process. It suggests the 
creation of a fuzzy system in two steps. In the first step one 
defines the first two rules and initiates the rule base with 
them. These relations describe the typical minimal and 
maximal outputs. For this one looks for the two output 
extremes and then searches the typical data rows for them. 
If more data rows contain the same minimum/maximum 
output that one is chosen which is closer to the border of 
the antecedent field. 
 
Next one assigns fuzzy sets to the data using trapezoidal 
fuzzyfication with predefined core and support width 
values (default set shapes). The reference points of the 
resulting linguistic terms coincide with the values of the 
two data rows.  
 
The RBE concept extends the rule base in course of an 
iterative process. In each iteration cycle it tunes the 
parameters of the rule set using a heuristic hill climbing 
approach. Each parameter is modified one by one in both 
of the possible upper and lower (increasing and decreasing) 
directions. After determining a new value for the current 
parameter the system is evaluated calculating the actual 
value of the performance index (e.g. root mean square of 
the error). If this is better than the previous minimum the 
new parameter value is kept. 
 
The amount of modification of the set parameters depends 
on the range of the current input/output dimension, i.e. the 
step is calculated by multiplying the range by a coefficient. 
The iteration starts with a prescribed value of the 
coefficient. If the improvement of the system slows down 
or even stops, i.e. the value of the performance index does 
not improve more than a prescribed threshold during one 
iteration cycle; the coefficient is divided by two unless its 
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Fig. 5. Rule base of the fuzzy model describing the relation 
between Charpy impact strength (CIS) and the nanotube and ABS 

amount 
 

 
 

Figure 6. Rule base of the fuzzy model describing the relation 
between Yield strength (YS) and the nanotube and ABS amount 
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Figure 7. Measured and calculated values in case of the Charpy 

impact strength (CIS) model 
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Figure 8. Measured and calculated values in case of the Yield 

strength (YS) model 

vale is already equal to the allowed minimum. In that case 
one generates a new rule. 
 
Each new rule will describe that point of the consequent 
space where the deviation is the biggest between the 
sample data and the output calculated by the fuzzy system. 
RBE-DSS uses default set shapes (typical for each 
partition) for the determination of the shape of the new 
sets. These default values are identical to those used for the 
generation of the first two rules. 
 

V. RESULTS AND DISCUSSION 

 
In this study, two fuzzy models have been developed to 
predict the Charpy impact strength (CIS) and the yield 
strength (YS) in function of the percent amount of the 
components in thermoplastic composite production. 
Although the mixture contained three components, namely 
the nanotube, the ABS, and the PC the models use only two 
of them (nanotube and ABS) as input variables because the 
percent amount of the PC is a dependent variable.  
 
We used the root mean square of the error expressed in 
percentage of the output variable’s range (RMSEP) as 

performance measure of the fuzzy models. The first fuzzy 
system developed for CIS prediction contains 24 rules, the 
second model generated for YS contains 30 rules for the 
description of the relation between the input and output. In 
both cases the rule base is sparse. The application of sparse 
rule base targeting techniques resulted in a notable size 
reduction of the rule base compared to the case of the full 
coverage. The cut was 27.27 % in case of the CIS model 
and 31.82 % in case of the YS model. Figures 5 and 6 
illustrate the two rule sets. Each rule is represented by a 
brick defined by the supports of the fuzzy sets contained in 
the rules. 
 
The performance of the system is characterized in Table I. 
Figures 7 and 8 give a qualitative view of the model 
evaluation. Both systems have two input dimensions; 
therefore the measured and calculated output values can be 
visualized only by 2D plots where the horizontal axis 
represents the ordinal number of data points. One can 
observe clearly that the results calculated by the fuzzy 
model give a good approximation of the data originated 
from the experiment. 
 

VI. CONCLUSIONS 
 
The paper presented the application of RBE-DSS rule base 
identification and LESFRI fuzzy rule inference methods for 
fuzzy modeling of the relation between the mechanical 
properties of the thermoplastic composites and the percent 
amount of their components. The models were evaluated 
using RMSEP as performance indicator. Conform the 
testing results the two generated models proved to be good 
predictors of the studied process. 

TABLE I.   
PERFORMANCE OF THE FUZZY MODELS  

 CIS YS 

RMSEP 2.1594 % 0.4795 % 
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