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Abstract— The ability to predict mechanical properties of The prediction of mechanical properties is of great
thermoplastic composites in order to satisfy theimportance in composite production. Soft computing
performance requirements is of great importance intechniques like fuzzy rule based systems (FRBSficial
course of the design. In this paper, a general math neural networks (ANN) and genetic programming (GP)
group for data driven fuzzy modeling and its app@ion have been applied successfully for modeling ofedéht
is presented. Two low complexity fuzzy models wergon-linear phenomena where one does not know thet ex
generated for the prediction of Charpy impact stgth mathematical formula that describes the relatiotween
and yield strength as a function of the percent aumb of the input and output variables of the model, batetexists
the components. The models take as input parametiees human expertise or experimental data is available.
percentage of the nanotube and ABS

The advantages of FRBSs can be summarized in the
Keywords: thermoplastic composite, fuzzy modeling,following points.

LESFRI, RBE-DSS,
1) They can incorporate human knowledge as well as
knowledge induced from numerical data obtained by
I. INTRODUCTION the observation of the original phenomena.

In the 19. century polymers were used as synthet®) The model is described by fuzzy rules that are easy
substitute materials instead of raw materials. Niaya interpretable and analyzable by humans.
polymers are very important materials; they aredufes
different purposes. The variety of plastics is emmus; 3) Each fuzzy rule represents a local model, whichltes
however, in some cases there is no pure materiallfit in robustness and good approximation capability
all the requirements. In these cases it is importan because the modification of a single parameter does
prepare the desired material by mixing pure polyener not alter the whole model.
materials with fullerenes in order to reach the irdes
mechanical properties. 4) A suitable initial parameter set determined by hama
experts can substantially speed up the trainingge®
One type of fullerenes, the carbon nanotube ifiénfocus
of the researchers of polymer blends in the lastyiars There is a broad literature reporting successfalctical
[1][2]. Carbon nanotube-polymer composites are rofteapplications of FRBSs. Kovacs and Koczy [13] depebb
used owing to the increase of the polymer’'s conditgt a fuzzy rule interpolation (FRI) based model fohd&eour-
[3][4][5] and decrease of its resistance. Thus tebstatic based control structures. Johanyak, ParthibanSahkdran
discharge can be avoided. It was also discoveradtiie [14] constructed fuzzy models for an anaerobic rege
mechanical properties (modulus, strength, etc.) ban fluidized bed reactor. Wong and Gedeon [15] as asll
enhanced by adding carbon nanotube to virgin palymdohanyak and Kovacs [16] developed FRBSs for
[6][7]. In addition, among other properties the rthal prediction of petrophisycal properties. Blaand I. Skrjanc
stability and fire resistance can be influencedfably as [35] developed a fuzzy model based predictive adntr
well by using carbon nanotube [8][9][10]. algorithm applicable for processes with strong imeaar
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dynamics and high transport delays. Hladek, ¥kSand temperature was 260° C. The mould temperature Was 4

Sin &k [36] proposed a hierarchical multi agent controC.

system based on rule based fuzzy system for pursuit

evasion task. In order to study the mechanical properties of thst
pieces we broke them under liquid nitrogen. Theldyie

In this paper, we present the results of our reseaiming strength was determined by an INSTRON 4482 equipmen

the generation of fuzzy models in order to supgbg The Charpy impact strength was determined as wéelgua

prediction of mechanical properties of thermoptastiswinging pendulum (Charpy pendulum).

composites as a function of the percent amounthef t

components. Two models were generated, one forpg§hatWe also prepared scanning electron microscopic (SEM

impact strength and one for yield strength. Bothdel® pictures to investigate the fractured surface o€ th

apply the percentage of the nanotube and ABS ast inomposites. A field-emission SEM (FESEM, Hitachi-

parameters. The amount of the third componer84700) was applied for this task. SEM micrographthe

(polycarbonate) is a dependent variable, thereforgas fractured sample composites containing carbon ndeot

not used during the calculations. are shown in Fig. 1 and Fig. 2. The sample prejmaratas
carried out in the same way as in [12]. The carbon

The rest of this paper is organized as follows.tiBedl. nanotube can be seen on the fractured surfaces It

presents the experiments. Section Ill. introduchs timportant to emphasize that the distribution ofth@otube

methods and techniques used in course of the dasign in the matrix material is more or less uniform. \did not

identification of the fuzzy model. The results discussed find any sign of agglomerates in the materials.

in section 1V.

IIl. EXPERIMENTS

In order to investigate variation of the Charpy auop
strength (CIS) and yield strength (YS) of the cosifes in
function of the component’s percent amount we eckan
incomplete full factorial experimental design. The
incompleteness derived from the constraint thatstima of
the component’s percent amount had to be 100%.

The components were POLYMAN HH 3 also known as

ABS, the Multiwall Carbon nanotube master batch (MB

6015-00, Hyperion Catalyst, USA) and the polycadien

(PC). The ABS and PC polymers were used as matrix

materials. We defined three levels for the per@ambunt

of the nanotube (0%, 1%, and 1.5%) and eleven deivel

case of (0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%,,80%

90%, and 100%) ABS. The full factorial experimeitdrp

contained 33 settings from which 30 were executable Fig. 1. SEM micrograph of the fractured surfacénef composite
to the incompatible levels (see the above mentioned containing 1% nanotube, 90% ABS, and 9% PC
constraints). Each setting was tried ten times. The

experiments were carried out in random order. urs® of

the modeling the average value for each setting teeesn

into consideration as setting results.

The mixing of polymers was carried out in melt thiave
homogeneous properties. We used a special mixitig un
called Infinitely Variable Dynamic Shear Mixer (ID¥) PR
[11] to produce blends. The mixing instrument cetssf E“
the dynamic unit and a satellite extruder. Theusldr is a g ~
Collin Teach-Line E20T. The single screw extrudemps 1
the melt into the dynamic mixer. The mixer hasatsn
drive and a screw feed section which takes the stedams
and conveys them into the mixer elements consisbing
rotors and stators. The setup of the mixing element ~ '
generates high shear to give dispersive and disivio Fig. 2. SEM micrograph of the fractured surfacéhef composite
mixing of the components. The test pieces wereciign containing 1% nanotube, 10% ABS, and 89% PC
molded by ARBURG Allrounder 270 U 350-70. The melt
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Fig. 3. Sparse fuzzy rule base

Ill. FUZZY MODELING

A. Fuzzy Inference

In course of fuzzy modeling one can choose fromigew
variety of inference methods. They can be divided two
main groups depending on their ability to cope giplarse
rule bases. A fuzzy rule base is sparse (e.g.3¥igthen for
some observations there is no rule that could ke
i.e. there is no rule whose antecedent part wotlkast
intersect the observation. Fig. 3 illustrates theo t
dimensional antecedent space of a sparse fuzzybade
that contains three rules whose antecedents aresmyied

by pyramids. In case of the observati{)h* , B*} none of
the rule antecedents intersects the observation.

The members of the first group are the so calledsital
compositional methods like Zadeh's [17], Mamdaipi8]
or Larsen’s [19] inference techniques. They reqairtill
coverage of the input space by the known rules.

The two-step FRI methods follow the concept of
Generalized Methodology of fuzzy rule interpolati@M)
developed by Baranyi Kéczy and Gedeon in [23].Ha t
first step they interpolate a new rule in the positof the
observation and next they calculate the conclusiing a
special single rule reasoning technique. Typicamivers

of this group are the technique family suggestedi2Bi,
LESFRI published by Johanyak and Kovacs in [24R\G
developed by Huang and Shen [25], the transformatio
based technique published by Chen and Ko [37] dlsase
the polar cut based FRIPOC suggested by Johanydk an
Kovécs in [26].

B. LESFRI

We chose LESFRI [24] as inference technique owinist
low computational complexity, its ability to preserthe
characteristic shape type of a partition, and gp@ttical
experiences gathered in course of previous fuzzgetig
problems.

Conform the concepts of GM LESFRI interpolatest fas
new rule in the position of the observation. Thensa
position here means that in each antecedent diomrisée
reference point of the antecedent fuzzy set ofnihe rule
will be identical with the reference point of thieservation.
The calculations are done independently in eacbcadent
dimension using the set interpolation technique FEAS.
FEAT-LS first shifts virtually all linguistic term®f the
partition (see Fig. 4) in order to reach a coinome
between the reference point of the observation ted
reference points of the shifted sets. The left @glat flanks
of the new set are determined separately.

The next step of LESFRI is the compilation of an
a-level set that contains all levels correspondingthe
break-points of the shifted sets on the currerit geright)
side. One calculates a characteristic point ohtine set for
each a-level so that the distances between theut

The members of the second group can use a moreacmmp?ndpomts of the shifted sets and the new chaiatter

representation of the knowledge incorporated in rille
base, they are capable to infer in sparse ruleshasavell.
This feature presents a large application poteimidiizzy
control
conclusion using approximation based reasoningallysa
kind of fuzzy rule interpolation (FRI) taking
consideration two or more rules situated in clagewider
neighborhood of the observation. These methodsfatso

[34] as well. These methods determine th

into

point to be minimal by the means of the weighteaste
squares methods. The weighting expresses that the
linguistic terms situated originally in farther pions of the
gartition should have a weaker effect on the rethdn
those situated originally in closer neighborhood tbé
observation. The rest of the set shape is detednine
connecting the neighboring characteristic pointh nes.

After determining the shape of the antecedent cktbe

two subgroups, the so called one-step and two-step

techniques.

ilmp =

-
)

The one-step FRI techniques determine the conclusio
directly from the observation and the rules taketo i
consideration. Here belongs e.g. the linear intetmm
proposed by Kéczy and Hirota [20], the vague emrnent
based reasoning FIVE developed by Kovacs [21],her t
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new rule one calculates the position (referencehtpoy
the crisp Shepard interpolation [27], which caltegathe
new point as a weighted average of the referenggof

The methods following the second way produce alvake
directly that does not cover fully the antecedepace.
Usually they follow one of the following four apgrches.

the known rules’ consequents. Next the shape of the

conclusion is determined using the same set inkatipa
technique as in the case of the antecedent sets.

In the second step of LESFRI the conclusion is getrd
by a special revision technique called single reesoning
based on the method of least squares (SURE-LSyleSIin

Try to identify the so-called optimal fuzzy rules.d.
[29]).

1)

2) Extend the rule base by applying the concept oERul

Base Extension (e.g. [30]).

rule reasoning can be applied when the referencgspof 3) Create the starting rules based on fuzzy clustégrg
an observation and the reference points of a milecadent [31)).

coincide in all input dimensions. In such circumstas the

conclusion is generated by a modification the ruld) Apply evolutionary algorithms (e.g. [32],[33]) fahe
consequent’s shape. This modification also caledsion identification of the parameters.

should be related to the similarity/dissimilarityf the

observation and rule antecedent sets. Howevergtlision

does not alter the reference point of the consdgedn C. RBE-DSS

SURE-LS applies aa-cut based approach for this task. ILI_

uses a set oh-levels compiled together by taking into
consideration the break-point levels of all antecdgd
dimensions and the current consequent partitione T
calculations are done separately for the left aightr
flanks. On each side for each level it calculates t
weighted average of the distances between the éridpd

the a-cuts of the rule antecedent and the observation s

The weighting makes possible to take into constoara
the different antecedent dimensions (input statéalkes)
with different influence.

The basic idea of the method is the conservatiothef
weighted average differences measured on the al#ete
side. These differences are measured in horizdiredtion
and the revision results in an intermediate setroarray of
points. The conclusion with the desired shape tige
calculated from these applying the method of Lea
Squares. In cases when the rule antecedent fits
observation perfectly the conclusion will be ideatiwith
the consequent of the rule.

IV. FUZZY MODEL IDENTIFICATION

In course of fuzzy model identification one detares the
structure of the rule base, the number of rulesedkas the
membership function types and parameters of theyfuz
sets referenced in the rules. One can find a wadeety of
applicable methods in the literature. The selectiiost
depends on the demand whether a full coveragesahfiut
space is required or not, which on its turn laystbe
chosen inference technique. In our case we choSFRE
for fuzzy reasoning and therefore a low complexsiparse
rule base containing only the relevant rules isicent.
One can produce a sparse fuzzy rule base basioatiyo
ways. The first (e.g. [28]) starts from a complgtebvering
rule base and reduces the number of the rules ohomut
the non relevant rules or merging the similar rules

he rule base extension using default set shapB&{R
DSS) [30] proved to be a useful tool for the salntiof

ﬁuzzy model identification problems when the model

should be generated based on input-output datatigire
generated from the underlying process. It suggdsts
creation of a fuzzy system in two steps. In thst fatep one
defines the first two rules and initiates the rhkese with
fhem. These relations describe the typical miniraad
maximal outputs. For this one looks for the two port
extremes and then searches the typical data rowthdm.

If more data rows contain the same minimum/maximum
output that one is chosen which is closer to theldoof
the antecedent field.

Next one assigns fuzzy sets to the data using zoaghel

fuzzyfication with predefined core and support WWidt

values (default set shapes). The reference poihtdhe

Esulting linguistic terms coincide with the valuekthe
0 data rows.

The RBE concept extends the rule base in coursanof
iterative process. In each iteration cycle it turtbe
parameters of the rule set using a heuristic Hithlming
approach. Each parameter is modified one by oreoth
of the possible upper and lower (increasing andedesing)
directions. After determining a new value for tharent
parameter the system is evaluated calculating tteah
value of the performance index (e.g. root mean r&joa
the error). If this is better than the previous imiam the
new parameter value is kept.

The amount of modification of the set parametersedds

on the range of the current input/output dimensian,the
step is calculated by multiplying the range by afficient.
The iteration starts with a prescribed value of the
coefficient. If the improvement of the system slogsvn

or even stops, i.e. the value of the performandexrdoes
not improve more than a prescribed threshold dudng
iteration cycle; the coefficient is divided by twamless its
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performance measure of the fuzzy models. The fiisty

TABLE . system developed for CIS prediction contains 2ésuthe
PERFORMANCE OF THE FUZZY MODELS second model generated for YS contains 30 ruleshier
cls & description of the relation between the input antpot. In
RMSEP 21594 % 0.4795 % both cases the rule base is sparse. The applicaitisparse

rule base targeting techniques resulted in a netskde

vale is already equal to the allowed minimum. latttase reduction of the rule base compared to the caskeofull

one generates a new rule. coverage. The cut was 27.27 % in case of the Cl8emo
and 31.82 % in case of the YS model. Figures 5 @&nd

Each new rule will describe that point of the cansmt illustrate the two rule sets. Each rule is repre=egrby a

space where the deviation is the biggest between thrick defined by the supports of the fuzzy setstaimed in

sample data and the output calculated by the fagstem. the rules.

RBE-DSS uses default set shapes (typical for each

partition) for the determination of the shape oé thew The performance of the system is characterizedaileT|.

sets. These default values are identical to theed tor the Figures 7 and 8 give a qualitative view of the mode

generation of the first two rules. evaluation. Both systems have two input dimensions;
therefore the measured and calculated output valmedbe
visualized only by 2D plots where the horizontalisax

V. RESULTS AND DISCUSSION represents the ordinal number of data points. Ome c

observe clearly that the results calculated by filezy

In this study, two fuzzy models have been develomed model give a good approximation of the data origida

predict the Charpy impact strength (CIS) and theldyi from the experiment.

strength (YS) in function of the percent amount tioé

components in thermoplastic composite production. VI. CONCLUSIONS

Although the mixture contained three componentsyeig

the nanotube, the ABS, and the PC the models Ugedwn The paper presented the application of RBE-DSSbate

of them (nanotube and ABS) as input variables bsx e identification and LESFRI fUZZy rule inference nmmdk for

percent amount of the PC is a dependent variable. fUZZy mOdeIing of the relation between the mechanic
properties of the thermoplastic composites andpéreent

We used the root mean square of the error exprdﬂsedamount of their Components. The models were eveduat

percentage of the output variable’s range (RMSE®) a:siryg RMSEP as performance indicator. Conform the
testing results the two generated models provdzktgood

predictors of the studied process.
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