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Abstract: In case of fuzzy reasoning in sparseyfumfe bases, the question of
selecting the suitable fuzzy similarity measuresisential. The rule antecedents of
the sparse fuzzy rule bases are not fully covetiegnput universe therefore fuzzy
reasoning methods applied for sparse fuzzy ruleebasequires similarity
measures able to distinguish the similarity of rmwerlapping fuzzy sets too. The
goal of this paper is enumerating some of thesdawi® based similarity
measures and briefly introducing them.
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1 Distance based similarity measure

The most obvious way of calculating similarity afzfy sets is based on their
distance. There are more approaches on how thorelzetween the two notions
in form of a function can be expressed. Two of tlempresented below.

The first function is the following [7]:
-1
1+DM(A,B)’

where SM is the similarity measure, DM is the disameasure of two fuzzy sets,
and A respective B are the examined fuzzy sets.

SM(A, B) (€N



Another way of distance based similarity assessisemtoposed by Williams and
Steele in [1]. The suggested formula (2) contams»ponential expression.

SM(A, B) = g@P(48) )

wherea is a steepness measure. The vakig was found suitable for the practice
in case of a one dimensional universe of discourse.
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Fig. 1.

The functions (1) and (2) marked with SM1 and SM& presented in Fig. 1.
using normalized distances. SM1 has a uniform 8eitgi opposing to SM2
which has a far higher sensitivity and capabiliy distinction in the first quarter
of the interval.

In case of a multi-dimensional universe of disceutse approximation should be
started with a universal distance measure. Forntingeds the normalization of
all linguistic variables for e.g. the interval [P, 1t can be done by the help of
Lipschitz functions [2].

The universal distance measure is determined asighted mean of the distances
measured along each dimension (3).

DM, (A,B)=>"" w, (DM, (A,B) 3)

where n is the number of the input linguistic valés, w is the weighting for the
i" linguistic variable and DMs the distance measured along thdimension.

7
a=—— @)

n

W,

i=1 !
In a multi-dimensional case the valueooin (2) is determined by the formula (4)
(1].
Instead of calculating similarities from distanchg,a small re-explaining of the

meanings of the fuzzy rules, we can use the dist&of fuzzy sets directly for
approximate fuzzy reasoning.



Using distance based approximate fuzzy reasonisgahamportant precondition.
The distance of fuzzy sets can be defined onlyriveuses where it is possible to
define full ordering and metrics on every comporahthe universe of discourse
of the fuzzy sets (any other case the notion dédie is meaningless).

A distance function DM: X x X— R can be considered as metrics, if the
conditions specified below are fulfilled [4]:

- DM(AB)=00AB OX

- DM(AB)=0 ~ A=BOA,BOX

- DM(A,B)=DM(B,A) OA,B OX

- DM(A,B)+DM(B,C)>DM(A,C) 0 A,B,CO X

The City Block (5) and the Euclidean (6) are oftesed as metrics for distance
measure in case of crisp values.

DM =3 A ~B]. Q

DM = JZL(Ai -B,). (6)

where n is the number of dimensions and i is th@alseaumber of the actual
dimension.

2 Nona-cut based similarity measures

There are many useful distance definitions of fuseys in the literature. The
simplest one is thBisconsistency Measul&) of the fuzzy seté andB (7)

SD zl_supuAnB(X) Q)
xOX

where An B is the mint-norm, pa.g(X)=min{pa(x), ue(x) } O x O X. It is
basically the same measure as used in the min-marpasition. The
disconsistency measure is one crisp value in rah{&1].

In the followings, some distance measures, whi@h wwed for expressing the
similarity of trapezoidal shaped fuzzy sets (orzfuzsets have membership
functions can be traced back to a trapezoid forithoe presented.

In case of trapezoidal shaped fuzzy sets, the fgetycan be characterised by a
vector of four values, by the upper and lower eimlgoof the core and support
e.g. X=[x,X2,X3,X4].



This case the similarity between sets A and B aaddscribed by the formula (8)
proposed by Chen [5].

4
SM(A.B) =1—w ®)

If the universe of the fuzzy sets are normalizdtent SM(A,BJJ[0,1]. The
advantage of (8) is its simplicity and low compigaal complexity. However, its
drawback is that it can easily lead to the samelggraf similarity in case of
different shapes, too.

For instance if the trapezoid fuzzy set A=[0.2,0.4,0.8] is compared to the
trapezoid term B=[0.4,0.6,0.8,1.0] and to the wien shaped set
C=[0.4,0.7,0.7,1.0] and to the D=[0.7,0.7,0.7,0cflsp value, the similarity
measure is 1.6 in each case.

Chen and Chen proposed a method in [6], which canuked in case of
generalized trapezoid shaped fuzzy sets, too. Jimdarity measure (9) is based

on the calculation of the Center Of Gravity.
C A’B . * *
) ( )x mlnggﬁ,y?g ©)
maxya,Ys
where C(A,B) is defined as follows:

'710 a,-a,+b,~-b, =0

4

SM(A,B) = Pw % (1_

* *

Xa ~Xg

(10)

X; and y*A are the coordinates of the COG of the set A, rten'apex*B and y;

determine the COG of the set B. The disadvantagki®imethod is that it can not
handle cases when the examined sets have the s@@e Kt their shape is
different. The increased computational complexign cbe considered as an
additional drawback.

3 a-cut based similarity measures

3.1 Simple distance measures

Most of the distance definitions are based onctfwits of the two fuzzy sets, for
example:



Hausdorff Measuréo):

HM., (A B)=supHM(A,,B,) (11)
a=0
Hausdorff Measuré¢*):
HM. (A,B)=HM(A,B,) (12)
where
HM({U,V)= max{svglpiurtlllj d(u,v), igjpm d(u,v)} (13)

and d(u,v) is the Euclidean distance.

Kaufmann and Gupta Measu(®):

A, (A B)=supA(A,,B,) (14)

a=0

Kaufmann and Gupta Measu(®:

A.(AB)=1(A,B)) (15)
where
(a.-bJ+[a, - b))
2 [qi[”z - :[”1)

and By, &), [by, by] are the supports &4, B, respectively B, 5] is the support
of bothA, andB,, a[0,1].

A(A,,B,)=

(16)

Both the Hausdorff Measure akKéufmann and Gupta Measure are a crisp value
in range of [Oxp].

3.2 Kobczy's distance measure

The main problem of the distance definitions présgnabove is, that the
information of the shape of the membership funcbrhe fuzzy sets is mostly
lost. It is impossible to reconstruct from a giviezzy setA and from a given
Hausdorff orKaufmann and Gupta distance measure of two fuzig/fs@nd B,
the fuzzy seB. This type of reconstruction, at least in the dimaensional case,
has a great importance in rule interpolation, bseawithout it, from the distances
of the rule consequents and the fuzzy conclusionane looking for, it is
impossible to reconstruct the shape of the fuznchwion.



Solving these difficulties a useful definition istioduced by Koczy [7]. This
distance is based on tleecuts of the two fuzzy sets too, but the distarscaadt
aggregated to one crisp value, so from this kindisfance and from one of the
fuzzy sets the other set can be reconstructed.

The distance of two fuzzy sets is expressed by medra fuzzy set which is
defined over the interval [0,1]. In the course dficalations the Euclidean
distances between the end points of dheuts are considered. These are called

lower (df) and upper dS) distances and are calculated by formulas (17) and
(18) (Fig. 2.).

d? (A B)=inf{B}~inf{A"} 17)
dS (A B)= sur{B"}—sur{A"} (18)

If the universe of discourse is multi-dimensiortak distances between irfg},
inf{ By} and supf\y}, sup{By} can be defined in the Minkowski sense:

d7(AB)= (Zik:ldﬁ (A;,B)" )”W (19)
d?(AB)= (zikzld‘;; (A,,B)" )UW (20)
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min{X} max{X} X 0 1 d

Fig. 2. Normalised fuzzy distance between the fusetgA andB

An important restriction for the existence of thédgy Distance is that all the
comparable fuzzy sets should be convex and nomtlaérwise some-cuts are
not connected or do not exists at all, which makesdistance corresponding to
thesea-cuts meaningless. The only disadvantage of usieg<czy Distance for
interpolative fuzzy reasoning is that it is litbé difficult to handle.

4 Vague distance of points in a vague environment

In the case of rule interpolation it would be u$sfuch kind of distance definition,
which is easy to handle, for example the distantéwo fuzzy sets could be
characterised by one crisp number, and give thacehaf the reconstruction of



the membership function of a fuzzy set from anot&trand from their distance, at
least in the one dimensional case.

These seem to be two contradictory conditionsthoey can be satisfied, if we can
find a way for handling the distance of the fuzatssand a kind of shape
description separately.

4.1 Connection between similarity of fuzzy sets anghgue
distance of points in a vague environment

The concept of vague environment is based on theilasity or
indistinguishability of the elements. Theandx, values in the vague environment
are e-distinguishable if their distanced(ki,Xx,)) is greater thare (21). The
distances in vague environment are weighted distanthe weighting factor or
function is called scaling function (s(x)).

5.(x%) =[x

For finding connections between fuzzy sets and gu&aenvironment we can
introduce the membership functipin(x) as a level of similarity o to x. Thea-
cuts of the fuzzy set described by membership fangis(x) (23) form the set
which contains the elements that arec(tindistinguishable frona (Fig. 3.) (22):

>¢ (21)

0, @b)<l-a (22)

Ha(X)=1- min{d’S (a,b),l} =1- min{“': s(x)d% ,1} (23)
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Fig. 3.

The vague distance of points a anddab)) is basically théisconsistency
Measure(24) of the fuzzy set& andB (whereB is a singleton):

S =1-sup,5(x)= 4, @b) it 3@byio.1] (24)
XaXx

Thus disconsistency measures between member ferzypta fuzzy partition and
a singleton can be calculated, as vague distanfepoimts in the vague
environment of the fuzzy partition. The main diface between the



disconsistency measure and the vague distandetghe vague distance is a crisp
value in range of [&], while the disconsistency measure is limited@d]. That
is why it is useful irinterpolative reasoning with insufficient evidence.

So if it is possible to describe all the fuzzy fimms of the antecedent and

consequent universes of the fuzzy rule-base, aadliservation is a singleton,

one can calculate the disconsistency measuresdntecedent fuzzy sets of the
rule-base and the observation, and the disconsist@easures of the consequent
fuzzy sets and the consequence (we are lookingafovpgue distances of points.

4.2 Generating vague environments from fuzzy partions

The vague environment is described by its scalumgction. For generating a
vague environment we have to find an appropriatlirgg function, which

describes the shapes of all the terms in the fyzasition [8]. The method
proposed by Klawonn [9], for choosing the scalimgdtion s(x) (25), gives an

exact description of the fuzzy terms after theirorestruction from the scaling
function.

d
S(3) = |4/ (¥)| = ‘d—’”x" (25)
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Fig. 4. A fuzzy set and its scaling function
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Fig. 5. Scaling function describing all the fuzats

A scaling function always can be found, if ther@idy one fuzzy set in the fuzzy
partition (Fig. 4.). Usually the fuzzy partitionrains more than one fuzzy set, so
this method requires some restrictions (26) [9].

it min (). 3>0 = [44 ()] = |, (¥)| Dijo (26)



Generally the above condition is not fulfilled, tbe use of an approximate scaling
function is proposed as a “universal” function désnog all the fuzzy sets of a
fuzzy partition.

4.3 The approximate scaling function

The approximate scaling function is an approximmataf the original scaling
functions describing the fuzzy sets separately. Sitmplest way of generating this
function is the linear interpolation. Supposingtttize fuzzy sets are triangles,
each of them can be characterised by three valwes;onstant scaling functions,
which are the scaling factors of the left and tigltrslope of the triangle and the
value of the core point (Fig. 6.).
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Thus the approximation (s(x)) is a piecewise lindanction (27), which
interpolates the right side scaling factor of teft heighbouring term and the left
side scaling factor of the right neighbouring tdiig. 7.).

— S|L+1_S|R R ;

s(x) = ﬁtﬂx—xi)+sI | xO[x;,x;,,), 0i0[Ln-1}  @7)
i+l A

where

Xi is the core of the"iterm of the approximated fuzzy partition

st st

- .S are the left and right side scaling factors ofitheerm

n is the number of the terms in the approximatedypartition
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Fig. 7.

The drawback of the approximation presented abs\hat it can not handle the
big differences between neighbouring scaling factorcrisp fuzzy sets correctly.



In case of big differences, the bigger scalingdactominates” the smaller one
(Fig. 8., 9.). If one of the neighbouring fuzzy setcrisp (its scaling factor is
infinite), the slope of the linearly interpolatedating function is infinite too, so
both the fuzzy sets described by this scaling fonowill be crisp.
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Fig. 9. Linearly interpolated scaling function oty sets shown in Fig. 8., and
these sets as the approximate scaling functiorrideschemA’,B’)

As a solution of this problem the adoption of adliaear interpolative function
(28) is suggested [8].

w, Xy - X, +1)<
: KOV; ( - : 2@,. _l +S:_+l SlR 2 SiL+l
- (Xi+1'xi +1) 1 (X_Xi +1) ' (28)
S(X) - KW
W; (Xi+1'xi +1) 1|+ | R <<t
kv kv i i i+1
(Xi+1'xi +l) -1 (Xi+1_X+l) ‘
Wi = S’|L+1 - SIR‘ (29)
where XJ[X;,X+1),00 i0[1,n-1],
S(X) is the approximate scaling function,
Xi is the core of thé"iterm of the approximated fuzzy partition,
S,L ,SlR are the left and right side scaling factors ofith&iangle shaped term of

the approximated fuzzy partition,
k constant factor of sensitivity for neighbouringalng factor differences,

n is the number of the terms in the approximatedypartition.



The above function has same useful propertiebelieighbouring scaling factors
are equals, | is linear. If one of the neighbouring scaling ttas (e.g. %)

SIR - and the other one is finite, in case  of
| X > X.

XD[Xi ,Xi+1) = S(X) - | '+ and similarly
0| X # X,

if S|L+1 — o0 and S|R is finite andXD[Xi ,Xi+1) - S(X) . :||:¢_’Xxi+l}
i+1

Fig. 10. and 11. show some examples for the apgpgitaf the proposed non-
linear function.
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Fig. 10. Approximate scaling function generatedtiy non-linear function with
k=1, and the original fuzzy partitionAB) as this scaling function
describes it4’,B’)

y
w=32

w=16)

0.2 0.4 0.6 0.8 Ix

Fig. 11. =0, %=1, S} =S, , k=1

5 Conclusions

Distance based similarity measures of fuzzy setge hea high importance in
reasoning methods handling sparse fuzzy rule bdsesrule antecedents of the



sparse fuzzy rule bases are not fully coveringitipait universe. Therefore the
applied similarity measure has to be able to disfish the similarity of non-

overlapping fuzzy sets, too. The distance basedasity measures are such a
measures.

To give an overview of the distance based similarieasures of fuzzy sets, some
of the main existing concepts are briefly introdiige this paper.
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