
Johanyák, Zs. Cs., Kovács, Sz.:The effect of different fuzzy partition parameterization strategies in gradient descent parameter identification, 4th International 

Symposium on Applied Computational Intelligence and Informatics (SACI 2007), May 17-18, 2007 Timisoara, Romania, pp. 141-146. 

The effect of different fuzzy partition 

parameterization strategies in gradient descent 

parameter identification 
 

Zsolt Csaba Johanyák
1
, Szilveszter Kovács

2 

Institute of Information Technologies 

Kecskemét College, GAMF Faculty 

Kecskemét, Hungary 
1
johanyak.csaba@gamf.kefo.hu, 

2
kovacs.szilveszter@gamf.kefo.hu 

 

 
Abstract—One of the most critical steps during the development 

of a fuzzy system is the identification of the fuzzy rule base and 

the fuzzy partitions, the so-called “tuning”. This paper intends to 

present a comparative study of three different fuzzy partition 

parameter identification methods with respect to the effect of 

different fuzzy partition parameterization strategies.  
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I.  INTRODUCTION 

The automatic generation of the fuzzy rule base and the 
corresponding fuzzy partitions from a given set of input-output 
data is a very important part of the nowadays fuzzy systems 
research areas. There are numerous existing solutions for fuzzy 
rule base identification e.g. [7],[9], and [1]. 

In spite of the significant research work done in this field 
hardly can be found a comparative study of the different 
partition parameterization strategies. The main goal of this 
paper is to set up three standard fuzzy partition 
parameterization methods, and compare their efficiency by 
applying a gradient descent parameter identification method.  

The rest of this paper is organized as follows. Section II. 
introduces three parameterization approaches and defines the 
constraints related to them. Section III. presents the 
performance index used for system evaluations and the tuning 
algorithm. The results of the experiments are analyzed in 
section III. 

II. PARAMETERS AND CONSTRAINT DEFINITION 

A. The classical way (Method 1) 

The first approach we tried is identical with the 
parameterization used in [6] and [7]. Considering convex and 
normal trapezoidal shaped fuzzy sets the abscissas of the four 
break-points are selected as parameters.  

The vertices are numbered in clockwise direction starting 
with left endpoint of the lower base. In course of the 
modification of the parameters the following constraints have 
to be applied. 

• Starting from the second vertex the value of each 
parameter has to be greater or equal to its predecessor. 
It can be expressed by the inequality  

 41,1 ≤<≥ − kpp kk , (1) 

where kp is the current parameter, its subscript k 

indicates its position in the sequence of vertices. 

• In case of the first three vertices the value of each 
parameter has to be smaller or equal to its successor. It 
can be expressed by the inequality 

 41,1 <≤≤ + kpp kk . (2) 

• The reference point, in this case the midpoint of the 
core has to be inside the range of the current linguistic 
variable. It can be expressed by the inequality  

 max
32

min
2

R
pp

R ≤
+

≤ , (3) 

where maxmin , RR are the lower respective upper 

endpoints of the range of the actual input/output 
dimension. 

The last constraint is applicable only in case of inference 
methods that allow a fuzzy set situated at the margin of a range 
to lap over the touched boundary. The inference methods based 
on the concept of Linguistic Term Shifting (LTS) [4] belong to 
this category. Both of the techniques LESFRI [3] and FRIPOC 
[2], which were used in course of the preparation of this paper, 
apply LTS. 

B. Working with relative distances (Method 2) 

Another way of handling the vertices of a trapezoid results 
from transforming the original abscissa values into relative 
ones. In this case the first parameter serves for the 
identification of the position of the fuzzy set and it is equal to 
the horizontal co-ordinate of the left endpoint of the lower base 
of the trapezoid (see fig. 1). The position of the remaining three 
vertices is described by a positive or zero value indicating their 
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distance from the predecessor break-point. Considering the 
same numbering convention as used in the previous section 
results the formula 
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where kr denotes the k
th

 relative parameter. Hereby the 

constraints applicable during the modification of the 
parameters can be formulated simpler than in the case of the 
traditional parameterization way. 

• The parameters except the first one have to be positive 
or zero. 

 41,0 ≤<≥ krk  (5) 

• The midpoint of the core has to be inside the range of 
the current linguistic variable. It can be expressed by 
the inequality system 

 max
3

21min
2

R
r

rrR ≤++≤ , (6) 

Similar to the case of the approach presented in section II.A 
the second constraint has to be fulfilled only when one uses 
a special group of fuzzy reasoning techniques. 

C. Conserving the Ruspini character of the partition 

(Method 3) 

A significant advantage of the automatically generated and 
tuned fuzzy systems against trained neural networks is the 
interpretability of the generated rules. This feature can be best 
exploited when the system is built up from Ruspini partitions, 
i.e. in each point the sum of membership values is equal to 1. 

Here only the endpoints of the cores are used as parameters, 
the abscissas of the other two vertices are identical with the 
horizontal co-ordinates of the respective core-endpoints of the 
neighboring linguistic terms. In order to facilitate the 
application of LTS based fuzzy reasoning methods the first 
vertex of the leftmost set and the last (4

th
) vertex of the 

rightmost linguistic term is determined by mirroring the other 
flank around a vertical axis crossing the midpoint of the core 
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where jix ,  is the abscissa of the j
th

 break-point of the i
th
 

fuzzy set. 

Also in this case one has to define some constraints in order 
to ensure the validity of the sets and the desired character of the 
partition. They are the followings. 

• The abscissa of the third vertex should have a greater 
or equal value to the abscissa of the second vertex. 
Supposing a vector representation of the parameters of 
all fuzzy sets in a partition the current condition can be 
described by 

 nivv ii ≤≤≤− 1,212  (9) 

where n is the number of fuzzy sets in the actual 

partition, v  is the vector containing the abscissas of 

the sets, and i is the ordinal number of the current 
linguistic term, for which the condition is formulated. 

• The core of a set cannot even partly overlap the core of 
another linguistic term. However, two neighboring sets 
can touch each other (see fig. 2). In case of the i

th
 set 

this condition can be expressed by the following two 
inequalities 

 2212 −− ≥ ii vv , (10) 

 122 +≤ ii vv . (11) 

Since the used parameter identification method 
modifies the parameters one at a time the above 
defined two constraints can be merged in one 
inequality system 

 nkvvv kkk 21,11 <<≤≤ +−  (12) 

where k is the ordinal number of the currently adjusted 
parameter. 
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Figure 1.  Relative distances as parameters 
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Figure 2.  Two touching linguistic terms ( 1−iA  and iA ) 
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• The left endpoint of the first (leftmost) set cannot be 
part of the open interval of the range of the linguistic 
variable 

 min1 Rv ≤ . (13) 

• The right endpoint of the last (rightmost) set cannot be 
part of the open interval of the range of the linguistic 
variable 

 max2 Rv n ≥ . (14) 

• The midpoint of the core has to be inside the range of 
the current linguistic variable. It can be expressed by 
the inequality system 

 max
212

min
2

R
vv

R ii ≤
+

≤ −
. (15) 

Identical to the other two approaches condition (15) is 
applicable in case of parameter identification for LTS based 
inference methods. 

III. PARAMETER IDENTIFICATION 

A. Performance Index 

In course of the parameter identification process after each 
parameter adjustment the resulting parameter set is evaluated 
by calculating the system output for a collection of predefined 
input data, for which the expected output values are known. In 
order to compare the results obtained different parameter sets a 
performance index is calculated after each system evaluation. 

Both of the methods presented in [7] and [6] apply the 
mean square error (16) as performance index of a given 
parameter value set. 
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where M is the number of training data points, jy  is the 

output of the j
th

 data point and jŷ  is the output calculated by 

the system. 

Contrary to their approach our algorithm uses the root mean 
square [8] (quadratic mean) of the error as performance index 
for the evaluation of the fuzzy system. We chose it owing to its 
better comprehensibility and comparability to the range of the 
output linguistic variable. Its value is calculated by 
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The relative value of RMSE to the range (RMSEP) 
expressed in percentage is also monitored during the 
calculations 

 100⋅=
DR

RMSE
RMSEP , (18) 

where DR  is the range of the output dimension. The 
application of RMSEP as performance index makes possible 
the parameter identification by our algorithm even in case of 
Multiple Input Multiple Output (MIMO) systems. In that case 
the resulting performance index is calculated using the formula 

 ∑
=

=
outn

l

lRMSEPRRMSEP
1

2
, (19) 

where and outn  is the number of the output dimensions. 

B. Tuning Algorithm 

The parameter identification method used in course of the 
calculations is a heuristic algorithm a variant of the gradient 
descent method like the technique presented in [7]. Contrary to 
the method suggested in [7] our algorithm modifies the 
parameters of the output linguistic terms as well. The 
parameters of the final system considered as optimal 
(corresponding to a local or global minimum of RMSE) are 
iteratively approximated by the algorithm introduced in fig. 3. 

In course of iteration each parameter is modified one by 
one in both of the possible upper and lower (increasing and 
decreasing) directions. After determining a new value for the 
current parameter the system is evaluated calculating the actual 
value of the performance index. If this is better than the 
previous minimum the new parameter value is stored. 

The amount of modification of the parameters is dependent 
on the range of the current input/output dimension, i.e. the step 
is calculated by multiplying the range by a coefficient. 
Reference [6] suggests a constant value 0.05 (5%) for this task. 
The authors of [7] propose a formula that starts the coefficient 
with a value of 0.0417 (4.17%) and increases it when the 
reduction of the performance index is smaller than 10% in 
course of an iteration stage. 

We propose another adaptive approach, which determines 
the actual value of the coefficient depending on the change of 
RMSE during an iteration stage, the history of previous 
iteration stages, and a prescribed minimum value for the 
coefficient (Cmin). For the calculation of Cmin we determine first 
the range of each linguistic variable 

 outinjjj nnjRRDR +≤≤−= 1,minmax , (20) 

where inn  is the number of the input dimensions, minjR  

and maxjR  denote the lower respective upper endpoints of the 

current (j
th
) dimension. The threshold for the coefficient is 
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where dn is the maximal number of decimals used by the 
description of the parameters. 

The iteration starts with a prescribed value of the 
coefficient (default: 0.2). If the improvement of the system 
slows down or even stops, i.e. the value of RMSE does not 
reduce more than a prescribed threshold (default: 0.001) during 
one iteration, the coefficient is divided by two unless its vale is 
already equal to Cmin. In that case we generate a random value 
between 0 and 0.5 for the coefficient. It gives a chance to get 
out from the local minimum. We also limit the number of 
randomly generated coefficients (default: 2). Reaching this 
limit the iteration stops. 

On the other hand the coefficient is increased multiplying it 
by two when the improvement of the system speeds up, i.e. the 
value of RMSE increases more than a specified threshold 
(default: 10) during one iteration. The algorithm also stops 
when the prescribed number of iteration is done. The whole 
algorithm is presented on fig. 3. 

IV. SYSTEM TUNING RESULTS 

A. Introduction 

In course of the examination of the parameterization 
methods we tuned two fuzzy systems, a Single Input Single 
Output (SISO) and a Multiple Input Multiple Output (MISO) 
one. The data used were generated using the function  

 [ ]10,0,12 ∈+⋅= xxy  (22) 

in the case of the SISO (first) system, and the function 

 ( ) [ ]8.1,8.01
25.1

2

2

1 ∈++= − xxxy  (23) 

in the case of the MISO (second) system. The raw systems 
were generated by a similar technique to the method introduced 
in [1], which is also based on the clustering of the output and 
input spaces.  

The first system contains 9 input and 3 output linguistic 
terms and 9 rules. The raw system ensures a full coverage of 
the input universe. Its dense character did not change during 
the training process. 101 data points were used for the 
generation and tuning of the system. 

The second system contains 8 respective 9 linguistic terms 
in its two input dimensions, and its output partition is built up 
from 4 fuzzy sets. In this case the rule base is sparse, and it 
contains 18 rules. 196 data points were used for the generation 
and tuning of the system. 

The systems were trained to the fuzzy rule interpolation 
based inference techniques FRIPOC [2] and LESFRI [3] 
separately. In course of the tuning process both of the RMSE 
(17) and RMSEP (18) were monitored. The time need for one 
iteration is different in case of the first two and the third 
parameterization method because as long as by 
parameterization II.A (Method 1) and II.B (Method 2) four 
parameters have to be adjusted for each fuzzy set, in case of 
parameterization II.C (Method 3) the number of adjustable 
parameters is only two. In order to ensure the comparability of 
the methods the horizontal axis indicates the number of system 
evaluations (SE) on figures showing the variation of the 
performance in course of the tuning process (see e.g. fig. 5). 
During a system evaluation one calculates the output for all 
values belonging to the training data set, and calculates both of 
the performance indexes RMSE and RMSEP. 

B. Tuning the First System 

In case of the first system (see fig. 5-6) clearly the II.A 
(Method 1) parameterization way ensured the best results by 
both inference methods.  

In case of the first two parameterization approaches the 
better results are coupled with the jumbling of the linguistic 
terms on the antecedent side. Fig. 4 shows a graphic 
representation of the rule base after tuning with 
parameterization II.A for reasoning technique FRIPOC. The 
axes x and y correspond to the antecedent respective 
consequent universes, and the vertical axis represents the 
membership values. It is clearly visible that the consequent 

Evaluate the raw system with the training data 
Store RMSE as RMSE minimum 
Do iteration until the maximal number of iterations is reached 
 For each input and for the output dimension 
  Calculate modification step 
  For each parameter being adjusted 
   For both modification directions 
    Calculate the modified value of the parameter 
    Apply constraints 
    Evaluate the system with the training data 
    If RMSE actual < RMSE minimum 
     Store adjusted parameter value 
     Store RMSE actual as RMSE minimum 
    EndIf 
   EndFor 
  EndFor 
 EndFor 
 If RMSE did not change in course of one iteration 
  If Coefficient is equal to the minimum allowed value 
   If the number of randomly generated coefficients  
    is equal to the maximal allowed value 
     Stop iteration 
   Else 
    Generate a random Coefficient 
   EndIf 
  Else 
   Halve Coefficient 
  EndIf 
 EndIf 
 If RMSE decreased more than a threshold 
  Double Coefficient 
 EndIf 
End 

Figure 3.  Tuning algorithm 
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Figure 5. RMSE in course of tuning the first system for FRIPOC 
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Figure 6. RMSE in course of tuning the first system for LESFRI 

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

RMSE

SE

Method 3

Method 1

Method 2

 
Figure 8. RMSE in course of tuning the second system for FRIPOC 
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Figure 9. RMSE in course of tuning the second system for LESFRI 

partition conserved its easy interpretability whilst the 
antecedent side contains several overlapping linguistic terms. 

In contrast with this result in case of applying 
parameterization II.C (see fig. 7) both the consequent and the 
antecedent partitions preserve their interpretability thanks to 
the forced Ruspini type partitioning. However, the later 
approach leads to a weaker approximation capability of the 
system. 

Using LESFRI as reasoning technique, in some stages of 
the tuning process parameterization II.B (Method 2) ensured 
better RMSE(P) values but at the end of the tuning process 
Method 1 was the winner. In some parts of fig. 6 the curves 
intertwined. Therefore we used different line width values in 
order to ensure their distinguishability. 

C. Tuning the Second System 

In case of the second (MISO) fuzzy system (see fig. 8-9) 
parameterization approach II.B led to the best results by both of 

the inference techniques FRIPOC and LESFRI. However, the 
difference between the results gained with II.A and II.B was 
very small in case of LESFRI. 

Similar to the previous experiments if one takes a view of 
figure 10., which shows the input and output partitions of the 
best performing system tuned for FRIPOC with II.B, it can 
recognize clearly the same phenomena of jumbling linguistic 
terms on the antecedent side as a result of the application of 
one of the first two parameterization ways. 

Likewise it appeared in the case of the SISO system, the 
price of conserving the Ruspini character of the partition in all 
dimensions, which ensures the extraction of easily 
understandable rules, was paid by the performance of the 
system. Fig. 9 shows that the best RMSE value obtained in 
case of II.C is approximately twice as much than in the case of 
the parameterization method 1 and 2. 

 

 
Figure 7. Rule base obtained after tuning the first system for the reasoning 

technique FRIPOC applying the II.C parameterization method 

 
Figure 4. Rule base obtained after tuning the first system for the reasoning 

technique FRIPOC applying the II.A parameterization method 
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V. CONCLUSIONS 

Parameter identification is a key step in fuzzy system 
development. This paper presented a comparative study of 
three parameterization approaches in order to find out the effect 
of parameterization method selection on the attainable system 
performance and on the decrease speed of the root mean square 
error used as performance index. 

Two system types and two inference techniques were tried 
in course of the experimentation. In case of the SISO system 

the first parameterization method ensured the best result. In 
case of the MISO system the best performance index was 
encountered by the second parameterization approach. In both 
cases the system based on reasoning method FRIPOC [2] had 
the better tuning capability. 

Although the third parameterization way has the great 
advantage of ensuring the extraction of always well 
interpretable rules it has been shown that this approach leads to 
a lower system performance by the applied parameter 
identification algorithm (see fig. 3). The enhancement of the 
algorithm in this direction is subject for further research work.  

The implementation in Matlab of the presented tuning 
methods can be downloaded from [10]. This website is 
dedicated to a fuzzy rule interpolation Matlab toolbox 
development project (introduced in [5]) aiming the 
implementation of various FRI techniques. 
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Figure 10. Input and output partitions of the best performing MISO system 

after tuning for FRIPOC with parameterization II.B 


