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Incremental Fuzzy Rule Base Extension with 
Optimization1 

Johanyák, Zsolt Csaba 2 −−−− Kıházi-Kis, Ambrus3 

A sparse fuzzy rule base offers low complexity and low memory demand for a 
fuzzy system. Its automatic generation from sample data involves two main 
tasks, i.e. the structure definition and the parameter identification. In this paper, 
we present a novel approach that starts with two rules and incrementally creates 
new rules followed by the identification of their parameters using a direct search 
method. 

1 Introduction 
One of the key steps in fuzzy model identification is the creation of the rule 
base. In several cases there is no human knowledge that could be incorporated in 
form of predefined linguistic terms and fuzzy rules. Therefore the model is 
generated automatically from sample data. Most of the known methods create 
dense rule bases, which can lead to a rule number explosion in case of high 
number of dimensions and high number of sets/dimension. 

The RBE-DLS (rule base extension with direct local search) method ensures a 
trade-off between the demand on approximation capability of the fuzzy system 
and the demand on low complexity of the rule base by generating a sparse rule 
base. It follows the concept of rule base extension [7] and identifies the 
parameters of the fuzzy system using a direct local search method.  

The rest of this paper is organized as follows. Section 2 presents the applicable 
membership function parameterization approaches. Section 3 introduces the new 
method after reviewing the concepts of sparse rule bases and rule base extension. 
Section 4 presents some experimental results applying RBE-DLS and the 
conclusions are drawn in section 5. 
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2 Parameterization 
Each membership function can be described by a smaller or larger number of 
parameters depending on the shape type. The piece-wise linear membership 
functions can be described easily by the position of the break-points. For 
example in case of a singleton the parameter is the element of the universe of 
discourse whose membership value is greater than zero; or in case of a triangle 
shaped normal fuzzy set (e.g. fig. 1) the parameters are the abscissa values of the 
three vertices 
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Fig. 1 Parameterization of a triangle shaped membership function 

The number of the parameters determines the number of variables whose values 
are changed in course of the fuzzy model identification, which has a strong 
effect on the time need of the process. In several cases one might use uniform 
shaped fuzzy sets in order to reduce the time demand. Thus only one parameter 
has to be adjusted in case of each linguistic term. This parameter is the position 
of the set described by the reference point. Usual choices for this task are (fig. 2) 
abscissa values corresponding to the centre of the core (RPCC, e.g. [1][3][6]), the 
centre of gravity (RPGC, e.g.[5]) and the centre of the support (RPSC, e.g. [3]). 
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Fig. 2 Usual reference point types 
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Although the application of the uniform shaped sets reduces the time 
consumption of the tuning and preserves the good interpretability of the fuzzy 
rules it also can have a negative side effect by reducing the performance of he 
fuzzy system (see section 3.5 on details about the performance measurement). 
Thus the selection of the parameterization is a trade-off between the 
performance of the system and the cost of the model identification. 

3 Model identification from numerical sample data 
Fuzzy model identification usually consists of the following two steps. 
1. Data preprocessing that could include the identification of the input and 

output linguistic variables, determination of the lower or upper bounds of 
each dimension of the input and output universes of discourse, statistical 
analysis of the data regarding the relevance of the input variables excluding 
the non relevant ones in order to reduce the complexity of the system. 

2. Rule base generation that includes the definition of the input and output 
partitions as well as the extraction of the rules from the sample data. In 
course of the rule base generation one can follow two different approaches. 
The first one divides the task in two separate steps, i.e. the structure 
definition and the parameter identification (e.g. Precup, Doboli and Preitl 
[16]; or Botzheim, Hámori and Kóczy [2], or Škrjanc, Blažič and 
Agamennoni [19]).  

The second approach works incrementally by simultaneously modifying the 
structure and the parameters, i.e. introducing or eventually eliminating rules 
and tuning the parameters of the membership functions (e.g. Johanyák and 
Kovács [7]). This approach also can be applied in case of adaptive fuzzy 
systems (e.g. Vaščák, and L. Madarász [21]) 

The method being presented in sections 3.3 and 3.4 covers the second step and 
follows the second approach. 

3.1 Sparse rule base 

The rule base of a fuzzy system is categorized as dense (covering) or sparse 
(non-covering) depending on the coverage of the input space by rules, which is 
defined by the formula 
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where Xi is the ith dimension of the antecedent space, Ai
* is the fuzzy set 

describing the observation in the ith antecedent dimension, Aij is the jth linguistic 
term of the ith antecedent dimension, t is an arbitrary t-norm, ni is the number of 
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the linguistic terms of the ith antecedent dimension, N is the number of the 
antecedent dimensions, and argmax(.) calculates the ε value for which the 
expression in the parentheses takes its maximum. If c> ε0 the rule base is called 
ε0 covering (dense) otherwise it is considered sparse.  

 

Fig. 3 Sparse antecedent space 

If there is no demand on an ε>0 value the rule base is considered sparse when 
there is at least one possible input value for which the rule base does not contain 
an applicable rule. 

3.2 Fuzzy inference in sparse rule bases 

Fuzzy systems applying sparse rule bases have to use approximate inference 
techniques that can cope with the lack on rules in some regions of the input 
space. For this task the most used techniques are the fuzzy rule interpolation 
based ones. They form two main groups based on the key ideas they are using. 

The members of the first group, the so called one-step methods determine the 
conclusion directly from the observation taking into consideration two or more 
existent rules of the rule base. The methods KH [20], FIVE [10], IMUL [22], 
IRG [3], and Kovács’s method [9] belong to this category. 

The members of the second group first produce a new rule in the position of the 
observation using rule interpolation and next, they determine the conclusion by 
firing the interpolated rule. Here belong for example the methods GM [1], IGRV 
[5], LESFRI [6], as well as Chen and Ko’s method [4]. 

3.3 RBE-DLS 

The rule base extension using direct local search (RBE-DLS) method aims the 
generation of a fuzzy rule base from numerical sample data. The data consist of 
known input and output value pairs. The input could be one- or 
multidimensional, while the output has to be one-dimensional. In case of a 
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multidimensional output a separate rule base can be generated for each output 
dimension. 

The basic idea of the Rule Base Extension (RBE) is that one creates first an 
initial rule base and next, one starts an iterative tuning process when beside the 
adjustment of the values of the known sets’ parameters new linguistic terms and 
rules are introduced into the rule base. 

The initial rule base contains only two rules, one describing a maximum point of 
the output and one describing a minimum point of the output. First one seeks the 
two extreme output values and a representative data point for each of them. If 
several data points correspond to an extreme value, one should select the one 
that is closer to an endpoint of the input domain. 

The reference points of the antecedent sets of the first rule will be identical with 
the corresponding input values of the minimum point. The reference point of the 
consequent set will be identical with the output value of the minimum point. The 
shape of the linguistic terms is determined by the default set shape, which is a 
characteristic feature of the partition. The antecedent and consequent linguistic 
terms of the second rule are determined in a similar way taking into 
consideration the maximum point. At this point the system contains two 
linguistic terms in each dimension.  

Having the first two rules determined, next a parameter identification process is 
started, which iteratively adjusts the values of the linguistic terms’ parameters. 
The details of the applied algorithm are presented in the next section. If the 
improvement velocity of the fuzzy systems’ performance index falls below a 
specified threshold or even stops after an iteration cycle a new rule is generated. 
It is because the system tuning reached a local optimum of the performance 
indicator and the performance cannot improve further by the applied parameter 
identification algorithm. The new rule introduces additional tuning possibilities. 
However, in some cases the performance will deteriorate temporarily after the 
insertion of the new rule into the rule base. 

In order to create the new rule, one seeks for the calculated data point, which is 
the most differing one from its corresponding training point. The input and 
output values of this training point will be the reference points of the antecedent 
and consequent sets of the new rule. The shapes of the new linguistic terms are 
determined using the default shape types of the corresponding partition.  

Further on, the last two steps (parameter adjustment and new rule creation) are 
repeated until the specified iteration number has been reached, or the value of 
performance index overcomes a prescribed threshold. 
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3.4 Parameter identification using a direct search method 

The aim of the parameter identification process is to improve the model by 
optimizing its performance evaluated by the so called merit function. In case of 
fuzzy systems’ optimization the merit function is also called performance index 
(see section 3.5 for its definition). Owing to the nonalalytic behaviour of the 
merit function one can use effectively only so called direct search methods for 
optimization. 

The best known direct serch method is a so called simplex method invented by 
Nelder and Mead in 1965 [15] [18]. It is a very effective method in case of a lot 
of problems having low number of dimensions. It is widely used even nowadays 
although this method sometimes fails to find the local optimum also for well 
behaving (two times continuously differentiable) functions [14]. One of the 
authors tested this algorithm for different dimensional analytic problems of 
highly reflecting dielectric mirror design [11] starting from a randomly chosen 
point in the parameter space. This method proved to be statistically stable up to 
approximately 6-8 dimensions. In higher dimensions the method of Nelder and 
Mead characteristically loses its way to the local optima. That is this method is 
not expected to solve our problem in the parameter space with dimension of 
significantly higher number than 6-8. 

Recently direct search methods have been intensively investigated (e.g. in [8]) 
also in mathematical analysis. A well defined class of direct search algorithms 
has been identified [8] that can be proved to be convergent for maximization 
problems with orderly merit functions (that is at least two times differentiable). 
The generalized algorithm is called Generating Set Search (GSS) method. It 
must fulfill some conditions for the sake of convergence but there are plenty of 
features which are freely variable for optimizing the speed of the convergence of 
the algorithm [8]. 

We developed a GSS search code in which optional exploratory moves are used 
to fasten the convergence of the algorithm [11][13]. The convergence of the 
algorithm is guaranteed by the search on a minimal positive base whose 
elements form a regular simplex. The elements of this positive base can be 
obtained by the following recursive formula (for K,3,2=N ): 
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The algorithm can be described as follows: 
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Initialization. 

Let RRf N →:  given. 

Let NRx ∈0  be the initial guess. 

Let 0>∆ tol  be the step-length convergence tolerance. 

Let tol∆>∆0  be the initial value of the step-length control parameter. 

Let G be a positive base, a grenerating set for NR  given by the recursive 
formula of eq. (2). (In this case the lower bound of the cosine measure of the 
generating set: ( ) NG /1=κ .) 
Algorithm. For each iteration k=0, 1, 2, 3… 

Step 1. Let { }GddG kk ∈∆=  be the set of trial steps, and 

{ }GddsH kkk ∈∆+=  be the set of explanatory moves. Here ks  is a last 

successful step: 1−−= kkk xxs . (but 00 =s ) 

Step 2. If there  exists kk Hd ∈  such that ( ) ( )kkk xfdxf <+  than set  

- Set kkk dxx +=+1  (change the iterate). 

- If kks ∆>12  than set kk ∆=∆ + 21 . 

Step 3. Otherwise (now ( ) ( )kkk xfdxf ≥+  for all kk Hd ∈ ) 

Let kk Hd ∈max  such that ( ) ( )kkkk dxfdxf ≥max  for all kk Hd ∈ . 

If ( ) ( )kkk xfdxf <− max  than  

- Set max1 kkk dxx −=+  (change the iterate), 

- If kks ∆>12  than set kk ∆=∆ + 21 . 

Step 4. Otherwise if there  exists kk Gd ∈  such that ( ) ( )kkk xfdxf <+  than 

- Set kkk dxx +=+1  (change the iterate) and set  kk ds = . 

Step 5. Otherwise  
Let kk Gd ∈max  such that ( ) ( )kkkk dxfdxf ≥max  for all kk Gd ∈ . 

If ( ) ( )kkk xfdxf <− max  than 

- Set max1 kkk dxx −=+  (change the iterate) and set maxkk ds −= . 

Step 6. Otherwise do the following: 
- Set kk xx =+1  (no change the iterate). 

- Set kk ∆=∆ + 5.01  (contract the step-length control parameter). 

- If tol1 ∆<∆ +k  then terminate. 
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This algorithm has been implemented in C++ and MATLAB, and it was 
successfully tested on different problems (e.g. [11] and [12]). 

3.5 Performance index 

The performance index expresses the quality of the approximation ensured by 
the fuzzy system using a number that aggregates and evaluates the differences 
between the prescribed output values and the output values calculated by the 
fuzzy system. One can choose from several possible performance indices 
available in the literature (e.g. in [17]). We used the root mean square of the 
error (RMSE) as performance index owing to its good comprehensibility. and 
comparability to the range of the output linguistic variable. Its value is calculated 
by 
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where M is the number of training data points, jy  is the output of the j th data 

point and jŷ  is the output calculated by the system. 

4 Experimental results 
For testing purposes we considered first a nonlinear one-dimensional function 
presented in fig. 4 and we applied the LESFRI fuzzy inference technique. The 
sample data contained 101 uniformly distributed data points whose abscissa 
values were in the interval [0,10]. The sample data was split randomly into two 
sets, one containing 68 data points for training purposes and one containing 33 
data points for testing purposes. In order to avoid the overfitting of the fuzzy 
system to the training data points we also evaluated in course of the parameter 
optimization the performance of the fuzzy system against the testing data.  

Finally, we selected that parameter tuple which ensured a quasi optimal 
performance in case of the testing data as well. Thus the resulting fuzzy system 
contained 5 rules, and the value of the performance index was RMSE=0.0967 in 
case of the testing data and RMSE=0.0771 in case of the testing data. 
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Fig. 4 One-dimensional test function 
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Fig. 5 Two-dimensional test function 

Next, we used a two-dimensional nonlinear test function presented in fig. 5. 
Applying the above described considerations in this case the training data 
sample contained 130 data points and the testing data sample contained 65 data 
points. The final parameter tuple was selected based on the same trade-off 
between the performance of the system against the training and testing data sets 
as in the case of the first experiment.  

The resulting fuzzy system contained 19 rules, and the value of the performance 
index was RMSE=0.6600 in case of the training data and RMSE=0.6749 in case 
of the testing data. 

5 Conclusions 
The experimental results showed that the presented method was able to produce 
a low complexity sparse rule base in both cases. However, the approximation 



Johanyák, Z.C. - Kıházi-Kis, A.: Incremental Fuzzy Rule Base Extension … 

 32

capability of the resulting systems was slightly worse than the results obtained 
using the default set shape and hill climbing approach based technique published 
in [7]. 
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generálása szabálybázis kiterjesztés és lokális közvetlen 
keresés segítségével 

Johanyák Zsolt Csaba – Kıházi-Kiss Ambrus 

Összefoglaló 

A ritka fuzzy szabálybázisok alkalmazása lehetıvé teszi a rájuk épülı fuzzy 
rendszerek komplexitásának valamint memóriaigényének csökkentését. 
Mintaadatok alapján történı létrehozásuk két fı feladatot foglal magába, a 
szerkezet definiálását és a paraméterek beazonosítását.  

Cikkünkben egy új módszert ismertetünk ezen feladatok megoldásaként, amely 
két kezdı szabály létrehozását követıen inkrementálisan bıvíti a szabálybázist. 
Minden új szabály beillesztése után a rendszer paramétereinek kvázi-optimális 
értékeit egy lokális közvetlen keresési eljárás segítségével állapítjuk meg. 

Fuzzy Regelbasenherstellung durch RBE und eine direkte 
Suchmethode 

Johanyák, Zsolt Csaba – Kıházi-Kiss, Ambrus 

Zusammenfassung 

Dünnbesetzte Fuzzy Regelbasen sichern die geringe Komplexität und geringen 
Speicherbedarf der Fuzzy-Systeme. Ihre Herstellung von Sample-Daten 
beinhaltet im Wesentlichen zwei Aufgaben, nämlich die Definition der Struktur 
und die Identifikation der Parameter.  

In diesem Beitrag stellen wir eine neuartige Methode, die mit zwei Regeln 
beginnt und schrittweise schafft neue Regeln, deren Parametern werden durch 
eine direkte Suchmethode identifiziert. 


