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This paper reviews some important points of sparse rule-bases, the reason of their 
generation and after that three methods are presented, which allow the 
approximation of the missing rules with reasonable demand on computing. The 
delimitations and advantages of these methods are presented, too. 
 
SOME IMPORTANT QUESTIONS OF SPARSE RULE-BASES AND 
THE REASONS OF THEIR GENERATION 
 
Fuzzy systems based on a sparse rule-base do not have rules for all the possible 
combinations of observations. Thus a system working with classical fuzzy 
reasoning e.g. based on Compositional Rule of Inference can fire none of the rules 
by some observed values and will have no output. 
 

Fig. 1. 
 

As an example let us see a system having an input linguistic variable with a 
partition as it can be seen in Fig. 1. There are rules for the linguistic terms A1 and 
A2, but there is no rule for the fuzzy set A* marked by dashed lines. In the case of 
an observation of x=x* and the lack of a rule with matching antecedent part the 
system can not produce an output. 
 
How can a sparse rule-base emerge? 
 
Essentially a sparse rule-base takes its origin from one of the three reasons specified 
below: 
1. The rules generated from information obtained from experts or from other 

sources (e. g. neural network-based learning techniques) do not cover all the 
possible observation values. For instance assuming the partition in Fig. 1. on a 
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one dimensional universe of discourse the rule-base only contains elements that 
have only the fuzzy sets A1 or A2 as antecedents. 

 

Fig. 2. 
 

2. Gaps between the fuzzy sets can be arisen during the fine-tuning of the system 
due to the modification of the shape of membership functions (Fig. 2.). 

3. The number of the linguistic variables is so high that even if all the possible 
rules can be found out they could not be stored under the given hardware 
conditions. For instance assuming an observation with n=3 dimensions and k=5 
linguistic terms for each variable and supposing that in the antecedent parts of 
the rules only the AND relations are allowed and all antecedents contain each 
dimension, kn=125 rules would be needed. Taking no notice of the conditions 
mentioned above the number of the rules grows on. The great number of the 
rules increases the duration of the inference, too. Thus the performance of the 
system is decreasing. Making a rule-base sparse artificially could be a possible 
solution for such cases. 

 
METHODS APPLICABLE IN CASE OF SPARSE RULE-BASES 
 
In the lack of coverage by some observations methods based on rule approximation 
for turning out the consequence set should be applied. As a first step should be 
assured that each input linguistic variable has a ε-covering partition, where ε should 
be greater than zero. It can be fulfilled by introducing new linguistic terms. 
Observing a value without any rule in the course of system operation produces a 
new rule considering the existing rules in the neighbourhood of the observation. 
The principle is the more similar an observation to an antecedent part of a rule is the 
better it should resemble the estimated result of the consequent part of that rule [1]. 
The condition of the approximation is that there should exist at least a partial 
ordering relation over the fuzzy sets occurring in the antecedent and consequent 
parts of the rules [2]. First the similarity of fuzzy sets should be defined to solve the 
problem. This can be determined by evaluating the distance of the sets. 
 
THE DISTANCE OF FUZZY SETS 
 
The precedence relation is defined by fuzzy sets with the help of α-cuts. Let the A 
and B fuzzy sets be normal and convex and let inf and sup be the infinum respective 
the supremum of an α-cut. If for ∀ α∈(0,1] the conditions inf{Aα}< inf{B α} and 
sup{Aα}< sup{Bα} are hold, A<B is fulfilled. The distance of two fuzzy sets is 
expressed by means of a fuzzy set which is defined over the interval [0,1]. In the 
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course of calculations the Euclidean distances between the end points of the α-cuts 
are considered. These are called lower (α

Ld ) and upper ( α
Ud ) distances and are 

calculated by formulas (1) and (2). 
 
 ( ) { } { }ααα

1221 infinf, AAAAdL −=  (1) 
 ( ) { } { }ααα

1221 supsup, AAAAdU −=  (2) 
 
In the following sections three important interpolation-based methods are presented 
which can be used during the rule approximation. 
 
KÓCZY AND HIROTA’S METHOD 
 

 
Fig. 3.  

 
An important precondition of applying the K&H method is that we should find at 
least two rules surrounding the observation. Let us denote with Bi (B1, B2, etc.) the 
linguistic terms of the output linguistic variable. If one is using distance-based 
similarity measure, the basic idea of the rule approximation is that the closer the x 
observation belonging to the A* fuzzy set to the antecedent Ai (A1, A2, etc.) is, the 
closer the consequent set of the estimated rule should be to the Bi consequent. This 
expectation can be fulfilled proportioning the distances [2]. 
The rule-system shown in Fig. 1. contains two rules. Each of them contains only 
one linguistic term in its antecedent and consequent part. The rule-base is sparse, 
therefore in case of an input value between A1 and A2 a rule approximation is 
needed for the inference. Building the distance proportions (3) and using the (1) and 
(2) formulas in the case of each α-cut the lower (4) and upper (5) points of the 
consequence fuzzy set can be determined. 
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where i can be L or U depending on whether lower or upper point was calculated. 
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The needed consequence fuzzy set is determined in resolution form as a union of α-
cuts. The K&H linear interpolation only works efficient if the shape of the 
antecedent fuzzy sets are simple, possibly piecewise linear (e.g. triangle). Fulfilling 
this condition makes possible the description of the sets with only a few 
characteristic points. Thus it can be achieved that the calculations have to be made 
only for the significant α-cuts. 
The benefits of the above presented interpolative method are the easy 
interpretability and feasibility as well as the low computational complexity. Its 
drawback is that it can be applied only in case of accomplishment of the conditions 
given in (6) and (7) [3]. In other cases it can give birth of abnormal fuzzy sets. 
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THE LINEAR INTERPOLATION-BASED METHOD PROPOSED BY 
HSIAO, CHEN AND LEE [3]  
 
The author’s aim was the development of an approximation method which 
guarantees the triangular form of the consequence set in case of antecedents having 
triangular shapes. The method is based on K&H interpolation. As a first step the 
base points of the consequence are determined at a given α level (generally α=0) 
with the K&H method and after that the highest point is calculated. 
Further on only the solution of this latter task is presented. Let us notate with ki and 
ti (i=1,*,2) the left and right slopes of the three linguistic terms in Fig. 1. Further on 
let us notate with hi and mi (i=1,*,2) the left and right slopes of the three linguistic 
terms of the output linguistic variable and let 
 
 ykxkk 21* +=  (8) 
 ytxtt 21* +=  (9) 
 
where x and y are real numbers. x and y can be determined from the above two 
equations supposing the proportion of the slopes for each set is different. Let us 
notate with { }*

αBhst  the value of the universe of discourse corresponding to the 
highest point of the estimated set. In this case the slopes of the consequence can be 
expressed by the formulas given in (10) and (11). From these the value of { }*

αBhst  
(12) can be determined. 
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One of the advantages of this method is that it generates normal fuzzy sets on such 
occasions when the conditions of the K&H interpolation are not met. It has low 
computational pretensions and is well applicable when the known membership 
functions have triangular forms. As disadvantage can be mentioned that this method 
is not generally usable for all the membership function types. 
 
THE MODIFIED α-CUT BASED INTERPOLATION 
 
The method MACI developed by Tikk and Baranyi [5] uses the vector 
representation of fuzzy sets suggested by Yam and Kóczy in [4]. For instance the 
fuzzy set in Fig. 4. is an isosceles triangle, which can be given through three points 
( [a-1, a0, a1]

-1 ), which are called characteristic points. 
 

Fig. 4. 
 

During the short presentation of this method we are only dealing with the upper 
edge ( [a0, a1]

-1 ), the lower edge can be handled similarly. The points are referred to 
by two indexes with the notation aij. The first one (i) is the number of the rule. In 
our example this can be 1 or 2. The second one is the serial number of a 
characteristic point of the fuzzy set determined by the first index. In our case it 
could be 0 or 1. Thus a1=[a10, a11]

-1 is the vector describing the antecedent part of 
that rule which is the left side one from the nearest two rules wich surround the 
observation. The consequent fuzzy sets are described in a similar way, e.g. in the 
case of the first rule b1=[b10, b11]

-1. 
During the interpolation of the consequence belonging to the observation x a 
coordinate transformation is made. It happens on the purpose to avoid the 
possibility of abnormal reasoning. The non-negative result and the monotonous 
increasing coordinate values of the consequence are assured, too. The vector 
describing the upper edge is given by the formulas shown below in case of the 
approximation of the consequent fuzzy set by a triangular shape. 
 
 1−⋅′= Tyy  (8) 
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The method is well suitable for the case of complex shaped membership functions, 
too. Its advantages can be summarized in the following points. 
- The computational time is not increased in comparison with the basic 

interpolation type. 
- The conclusion preserves the piecewise linearity for the intervals between the 

characteristic points [2] with a good approximation. 
- The abnormal results are avoided. 
 
CONCLUSION 
 
Fuzzy systems using classical reasoning methods can not produce an output for 
each possible input value when their rule-base is sparse. A sparse rule-base takes its 
origin from insufficient information or from certain steps of system development. 
All the three presented linear interpolation-based rule approximation methods are 
easy to put into practice and have a low need on computational time. The most 
advantageous among them is the modified α-cut based interpolation. 
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