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Abstract—The appearance of Fuzzy Rule Interpolation (FRI) 

techniques in practical applications gains more and more 

importance for automatic identification of sparse fuzzy rule bases 

from given training data. This paper reports the generation of a 

fuzzy system, which models the relation between different oil well 

data aiming the prediction of petrophysical properties. The 

applied rule base generation method is RBE-DSS [8] and the 

fuzzy inference was performed by the technique LESFRI [6]. 
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I. INTRODUCTION

The modeling of the functional relationship between input 
and output data represents a wide application area for fuzzy 
systems. The development of Fuzzy Rule Interpolation based 
Inference Techniques (FRITs) opened new horizons on this 
field for practical applications due to the reduced complexity 
and storage space demand as well as due to its ability to handle 
cases when there is no experimental information that would 
describe the expected output for all the possible inputs. 

The prediction of petrophysical properties as part of 
reservoir evaluation is an important supporting tool in taking 
decisions on rentability of the exploration of a specific region. 
The collection of experimental data (borehole drilling, 
sampling and extensive laboratory analysis) is expensive. 
Therefore the FRIT based fuzzy modeling of petroleum well 
data could be very advantageous. 

The rest of this paper is organized as follows. Section II. 
recalls the basic concepts of sparse rule bases and the inference 
technique LESFRI applied as FRIT. Section III. overviews 
briefly the backgrounds of the modeled phenomena. Section 
IV. presents the applied rule base generation method and the 
used performance index. The experimental results are 
discussed in section V. 

II. FUZZY RULE INTERPOLATION BASED REASONING 

A. Sparse Rule Base and FRI based reasoning 

The classical fuzzy reasoning methods (e.g. Zadeh’s [23], 
Mamdani’s [14], Larsen’s [13], Takagi-Sugeno’s [15], etc.) 
require a full coverage of the input space by the rules of the 
rule base in order to ensure an acceptable output for each 

possible input (observation) of the system. This feature also 
called dense character of the rule base can be expressed by the 
condition 
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dimension and N is the number of antecedent dimensions. 

The fulfillment of condition (1) results in an explosive 
increase of the number of rules. This higher system complexity 
implies increased memory demand and slows down the 
inference process. 

Rule bases not fulfilling condition (1) are called sparse 
ones. For example fig. 1 illustrates the antecedent space of a 
fuzzy system having two input dimensions (A1 and A2). The 
rule base is sparse, it contains only three rules. The antecedent 
parts of the rules are represented by pyramids, which are 
defined by trapezoid shaped linguistic terms. In case of the 
observation A* none of the rule antecedents intersect the 
pyramid representing the input of the system and therefore 
none of the classical fuzzy inference techniques can produce an 
acceptable conclusion. 

Fuzzy systems based on sparse rule bases and applying 
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Figure 1. Antecedent space of a sparse rule base 
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FRITs can solve the problem of complexity explosion. 
Contrary to classical fuzzy reasoning methods they do not 
require the dense character of the rule base. They determine the 
conclusion taking into consideration two or more rules whose 
antecedent parts are in the neighborhood of the observation. 

FRITs can be divided into two groups depending on 
whether they are producing the estimated conclusion directly or 
they are interpolating an intermediate rule first. 

Relevant members of the first group are among others the 
linear rule interpolation (KH method) [11] proposed by Kóczy 
and Hirota, which is the first developed one, the MACI (Tikk 
and Baranyi) [18], the FIVE [10] introduced by Kovács and 
Kóczy, the IMUL proposed by Wong, Gedeon and Tikk [21], 
the method based on the conservation of the relative fuzziness 
suggested by Kóczy, Hirota and Gedeon [12] and the 
interpolative reasoning based on graduality introduced by 
Bouchon-Meunier, Marsala and Rifqi [2].  

The methods belonging to the second group follow the 
concepts laid down by the generalized methodology (GM) 
defined by Baranyi et al. in [1]. Typical members of this group 
are e.g. the technique family proposed by Baranyi et al. in [1], 
the ST method [22] suggested by Yan, Mizumoto and Qiao and 
the IGRV [3] developed by Huang and Shen as well as the 
techniques LESFRI [6], FRIPOC [5] and VEIN [9] developed 
by Johanyák and Kovács. 

B. LESFRI  

In course of the fuzzy modeling we applied the method 
LESFRI [6] as fuzzy inference technique. It belongs to the 
group of two-step fuzzy rule interpolation techniques. In the 

first step it determines a new rule whose antecedent sets are 
situated in the same position as the sets describing the 
observation, i.e. their reference point are identical in each 
antecedent dimension.  

The shape of the antecedent and consequent linguistic terms 
is calculated by the set interpolation technique FEAT-LS, 
which is based on the concept of linguistic term shifting and 
polar cuts. Its key ideas are recalled in section II.B.1. The 
position of the consequent sets is determined by an adapted 
version of the Sherpard interpolation [16]. The shape of the 
conclusion is calculated by the method SURE-LS also based on 
the concept of least squares. It is presented shortly in section 
II.B.2. 

1) FEAT-LS 
Fuzzy Set Interpolation (FSI) aims the determination of a 

new linguistic term in a given point of a fuzzy partition called 
interpolation point. This means that the new fuzzy set is 

generated in such way that its reference point coincides with 
the interpolation point. In case of two-step FRI methods an FSI 
technique is used for the calculation of the antecedent and 
consequent sets of the new rule. Thus the interpolation point is 
either the reference point of the observation or the reference 
point of the consequence in the current dimension. An FSI 
technique works only with one partition. Therefore the 
calculations in the different dimensions in both the antecedent 
and consequent cases can be done separately. 

The Fuzzy sEt interpolAtion Technique based on the 
method of weighted Least Squares (FEAT-LS) [6] was 
developed especially for the case when all sets of a partition 
belong to the same shape type and the characteristic (break) 

points are also situated at the same α-level. In such cases it 
seems to be a natural condition on the new linguistic term 
created in the interpolation point to suit this regularity as well. 

As a first step all the sets of the partition are shifted 
horizontally in order to reach the coincidence between their 
reference points and the interpolation point. The left part of fig. 
2 presents an example for a partition containing four linguistic 
terms and an interpolation point at x

i
=0.4. The effect of the 

shifting is presented on the right part of the figure.  

The effect of the shifting is not permanent. It is only used 
during the determination of the new set. Next the shape of the 
new linguistic term is calculated from the overlapped set 
shapes in a set form that belongs to the characteristic shape 
type of the partition (e.g. singleton, triangle, trapezoid, 
polygonal, etc). 

The characteristic points of the shape are determined by the 
method of weighted least squares taking into consideration the 
corresponding characteristic points of the overlapped sets. The 
weighting expresses that the sets situated originally in closer 
neighborhood of the interpolation point should exercise a 
higher influence than those situated originally in farther regions 
of the partition. 

2) SURE-LS 
The revision method SURE-LS (Single rUle REasoning 

based on the method of Least Squares) [6] was developed for 
the case when all linguistic terms of a consequent partition 
belong to the same shape type (e.g. singleton, triangle, 
trapezoid, etc.) and all characteristic (break) points are situated 

at the same α-levels. It also means that the height of all sets is 
the same. 

Thus the method seeks a special shape form with the having 
predetermined ordinate values of the characteristic points. 
Therefore only the abscissas of the characteristic points have to 
be calculated. 

SURE-LS applies an α-cut based approach for this task. It 

uses a set of α-levels compiled together by taking into 
consideration the break-point levels of all antecedent 
dimensions and the current consequent partition. The 
calculations are done separately for the left and right flanks. On 
each side for each level it calculates the weighted average of 

the distances between the endpoints of the α-cuts of the rule 
antecedent and the observation set. The weighting makes 
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Figure 2. The original partition and the shifted linguistic terms 



possible to take into consideration the different antecedent 
dimensions (input state variables) with different influence. 

The basic idea of the method is the conservation of the 
weighted average differences measured on the antecedent side. 
Applying these modifications on the consequent side usually 
results in a set of characteristic points that do not fit the default 
set shape type of the partition. Therefore the method of Least 
Squares is used in order to find the break-points of an 
acceptable conclusion. 

III. PETROPHYSICAL PROPERTIES

In order to prove the practical applicability of the method 
pair RBE-DSS as rule base generation tool and LESFRI as 
fuzzy inference technique we chose a real world problem 
introduced in [20]. 

One of the key tasks in course of the analysis of petroleum 
well log data is the prediction of petrophysical properties 
corresponding to specific input data, i.e. depth values different 
from the original ones used by the experiments. Such 
properties are the porosity, permeability and volume of clay 
[20]. The expensive and time consuming character of the data 
collection from boreholes increases the significance of the 
prediction. The predicted values help taking decisions on 
rentability of the exploration of a specific region. 

Our research task was to create a fuzzy model with low 
complexity that is applicable for the prediction of porosity 
(PHI) based on well log data described by three input variables. 
These are the gamma ray (GR), deep induction resistivity 
(ILD) and sonic travel time (DT). 

IV. FUZZY MODELING

1) System Generation using RBE-DSS 
The rule base of the fuzzy model was generated by the 

method Rule Base Extension using Default Set Shapes (RBE-
DSS) introduced in [8]. In the followings we recall briefly the 
basic ideas of the method. 

The key idea of the method is that after defining a default 
set shapes for fuzzy linguistic terms for each input and output 
dimension separately, one creates two rules that fit (describe) 
the minimum and maximum output. The default set parameters 
are dependent on the range of the actual linguistic variable. 

Next a tuning algorithm starts aiming the identification of 
the parameters of the initial fuzzy sets. This algorithm uses an 
iterative approach adjusting each parameter in several steps 
separately. The system is evaluated in each iteration step for 
different parameter values against a training data set and the 
parameter values ensuring the best performance index are kept 
for the next iteration. 

If the decreasing velocity of the performance index of the 
system is too slow, i.e. it falls below a specified threshold after 
two consecutive iterations a new rule is generated. It is because 
the system tuning reached a local or global minimum of the 
performance index and the performance cannot ameliorate 
further by the applied parameter identification algorithm. The 
new rule introduces additional tuning possibilities. However, in 

some cases the performance index will increase temporarily 
after the insertion of the new rule into the rule base (see fig. 3). 

In order to create the new rule, one seeks for the calculated 
data point, which is the most differing one from its 
corresponding training point. The input and output values of 
this training point will be the reference points of the antecedent 
and consequent sets of the new rule. The shape of the new 
linguistic terms is determined by using default core and width 
values. 

2) Performance Index 
In course of the parameter identification process after each 

parameter adjustment the resulting parameter set is evaluated 
by calculating the system output for a collection of predefined 
input data, for which the expected output values are known. In 
order to compare the results obtained with different parameter 
sets a performance index is calculated after each system 
evaluation. 

Our algorithm uses the relative value of the root mean 
square (quadratic mean) of the error (RMSEP) as performance 
index for the evaluation of the fuzzy system. We chose it 
owing to its easy interpretability. The value of the root mean 
square (quadratic mean) of the error [19] is calculated by 
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where M is the number of training data points, jy  is the 

output of the j
th

 data point and jŷ  is the output calculated by 

the system. 

The relative value of RMSE to the range (RMSEP) 
expressed in percentage is determined by 

100⋅=
DR

RMSE
RMSEP , (3) 

where DR  is the range of the output dimension. The 
application of RMSEP as performance index makes possible 
the parameter identification by our algorithm even in case of 
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Figure 3. Variation of the performance index in course of the tuning 
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Multiple Input Multiple Output (MIMO) systems. In that case 
the resulting performance index is calculated using the formula 

∑
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where and outn  is the number of the output dimensions. 

V. EXPERIMENTAL RESULTS

For the sake of easier comparability to a known FRI Fuzzy 
model identification method (discussed in [20]) the same 
training and testing data sets were used as it was introduced in 
[20]. The training data set consisted of 71 data points and the 
testing data set consisted of 51 data points. The data were 
preprocessed and each variable was normalized to the unit 
interval. 

The applied inference technique was LESFRI [6] combined 
with the COG defuzzification and we used RBE-DSS [4] for 
system generation and tuning. The antecedent and consequent 
partitions of the final system are presented on figures 4 and 5  

The fuzzy system was generated using RMSEP (3) as 
performance index. In order to compare the results with those 
published in [20] we also evaluated the final system against the 
training and testing data set by the correlation factor (5), which 
was used in [20] as a prediction accuracy indicator. 
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In case of both (training and testing) data sets our system 
showed a slightly better performance. Table I. presents the 
correlation factor values obtained after the evaluation of our 
system and those published in [20]. 

TABLE I. CORRELATION FACTOR VALUES

Correlation Factor 
Applied Method 

Training data Testing data 

MACI [20] 0.917 0.865 

RBE-DSS + LESFRI 0.934 0.890 

Another advantage of our system is that the number of 
linguistic terms and rules is significantly reduced in 
comparison to [20]. For example while the system presented in 
[20] was based on 63 rules, our version contains only 9 rules. 
However, it should be mentioned as a drawback that the shape 
of the membership functions of the input and output partitions 
(presented on figures 4. and 5.) are not so nice and uniform as 
the triangle shaped ones introduced in [20]. 

This feature can be traced back to the applied tuning 
algorithm (see. Section IV.1) that adjusts the break-points of 
the linguistic terms used as parameters one-by-one.

We used trapezoidal linguistic terms owing to its 
description capability for the case of the most frequent used 
singleton, crisp, triangle and trapezoidal fuzzy set shape types. 

Figure 3 presents the variation of the performance index 
(RMSEP) in course of the tuning. The horizontal axis 
corresponds to the number of system evaluations.  



0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Data point

P
H

I

PHI calculated

PHI measured

Figure 6. Measured and calculated data points obtained in case of the training data set 

The generation of the seven new rules is indicated by good 
observable peak points. 

Figure 6 presents the measured and calculated data points 
obtained in case of the training data set. Owing to the fact that 
the system has three input dimensions the calculated and 
measured data can be visualized only by a 2D plot where the 
horizontal axis represents the ordinal number of the data points 
and the vertical axis corresponds to the calculated and 
measured output values. 

VI. CONCLUSIONS

This paper presented the implementation details of a fuzzy 
system that was generated automatically from available 
training data by the help of the method RBE-DSS and the 
inference technique LESFRI. The system was also validated 
again a testing data set.  

The results of the experiments proved the practical 
applicability of the chosen methods showing better prediction 
accuracy than reported before in the literature. The calculations 
were carried out by the help of the Fuzzy Rule Interpolation 
and Fuzzy Rule Generation Matlab ToolBoxes available at 
[24]. 
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