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Abstract – The application of fuzzy rule interpolation 

(FRI) methods in fuzzy models can reduce the complexity 

of the fuzzy model significantly. In case of automatic 

model generation this reduced complexity also leads to 

quicker convergence of the fuzzy model.  

 

The goal of this paper is the detailed investigation of a 

fuzzy model construction in a real world problem, i.e. the 

prediction of petrophysical properties, which is an 

important supporting tool in taking decisions on 

rentability of the exploration of a specific region. 

 

Keywords:  fuzzy rule interpolation, automatic rule base 

generation, FRIPOC, RBE-DSS. 

 

 

I. INTRODUCTION 

 

The popularity of Fuzzy Rule Interpolation (FRI) based 

fuzzy models is emerging nowadays. The reason is very 

simple. The common “fuzzy dot” (or fuzzy relation) 

representation of fuzzy rules in fuzzy models, in case of 

classical fuzzy reasoning methods (e.g. the Zadeh-

Mamdani-Larsen Compositional Rule of Inference (CRI) 

Zadeh [37], Mamdani [25], Larsen [24], or the Takagi - 

Sugeno fuzzy inference [29]) are assuming the 

completeness of the fuzzy rule base and hence, the 

exponential complexity of the fuzzy model with respect to 

its input space dimensions.  

 

The appearance of FRI methods in fuzzy models where the 

derivable rules are deliberately missing from the fuzzy 

model (i.e. the model rule base is “sparse”) can reduce the 

complexity of the fuzzy model significantly. The reduced 

complexity of the fuzzy model also leads to quicker 

convergence in case of automatic fuzzy model generation 

based on known input-output pairs. On the other hand the 

FRI methods and the FRI based fuzzy models are 

considered to be novelties and they are still under 

investigation. 

 

As a validation of the practical applicability of the fuzzy 

model identification method RBE-DSS [15] with the fuzzy 

inference method FRIPOC [10] we chose a real world 

problem inherited from the field of well log analysis. 

 

The rest of this paper is organized as follows. Section II 

recalls the concepts of dense and sparse rule bases. Section 

III presents the main ideas of the polar cut based FRIPOC 

inference method. The basic concepts of the applied fuzzy 

model identification method are presented in section IV 

followed by the short description of the modeled problem 

in section V. Section VI deals with the results of the 

modeling comparing the obtained system structure and 

performance with the previously published ones. 

 

II. FUZZY SYSTEMS BASED ON SPARSE RULE 

BASES 

 

A. Sparse vs. dense rule base 

 

The first developed fuzzy reasoning methods (classical 

methods) require a full coverage ( 0>ε  in (1) ) of the 

input space by the antecedent sets of the rules  

 

( ){ }{ }( ),,,maxminmaxarg *

,11 iiiji

n

j

N

i XAAAti ⊂∀≥ ∗

== ε
ε

 

  [ ]1,0∈ε , (1) 

 

where N is the number of antecedent dimensions, ni is the 

number of fuzzy sets from the i
th

 antecedens dimension 

participating in rule antecedents, 
∗

iA  is the observation set 

in the i
th

 antecedent dimension and jiA ,  is the j
th

 set in the 

i
th

 antecedent dimension. 

 

This feature is called dense character of the rule base. If a 

rule base is dense it contains for each allowed observation 

value at least one rule whose antecedent sets overlap or 

intersect the observation in each input dimension. 

 

Fig. 1. illustrates the antecedent space of a dense rule base. 

The system consists of three input dimensions. Each rule 

antecedent is represented by a cube defined by the supports 

of the sets participating in a rule. For the sake of simplicity 
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in this case each antecedent partition contains three fuzzy 

sets. 

 

In case of dense rule bases the number of rules increases 

exponentially with the number of input dimensions and the 

number of linguistic terms in the partitions. In order to 

eliminate the drawbacks of increasing complexity, Kóczy 

and Hirota [21] suggested first the application of the so 

called sparse rule bases. When a rule base is sparse it is not 

ensured the full coverage of the input space, i.e. ε=0 in (1). 

Fig. 1. illustrates a sparse rule base containing only two 

rules. 

 

B. Reasoning in sparse rule bases 

 

Due to the lack of coverage in sparse rule bases the 

classical reasoning methods like Zadeh’s [37], Mamdani’s 

[25], Takagi-Sugeno’s [29], etc. cannot always afford an 

acceptable output. Therefore in case of these systems 

special approximate reasoning methods have to be used for 

the calculation of the conclusion. They may be used in case 

of fuzzy control [28] as well. 

 

Usually methods based on fuzzy rule interpolation (FRI) 

are applied in such cases. Their research and development 

was started by Kóczy and Hirota who created the first FRI 

technique called linear rule interpolation or KH method 

[21]. Since then quite a significant amount of literature has 

been published on this field. Overviews and evaluations of 

the available methods can be found in [7], [23], [26], and 

[27]. 

 

III. FUZZY REASONING BY THE FRIPOC METHOD 

 

We used the FRIPOC [10] fuzzy rule interpolation method 

in course of the fuzzy model identification. Its main idea is 

that it determines the shape of the conclusion by its polar 

cuts. The method follows the concepts of the generalized 

methodology of fuzzy rule interpolation (GM) developed 

by Baranyi, Kóczy and Gedeon [1]. It identifies the 

position of the fuzzy sets by their reference points using the 

midpoint of the core as reference point (Fig. 2). The 

conclusion is determined in two steps. 

 

First an auxiliary rule is interpolated whose antecedent sets 

are in the same position as the current input sets 

(observation) in each antecedent dimension, i.e. in each 

input dimension the reference point of the observation will 

be identical with the reference point of the antecedent set of 

the new rule. 

 

The antecedent and consequent sets of the new rule are 

determined by set interpolation using the FEAT-p [14] 

technique. The position of the consequent sets is calculated 

by an adapted version of the Shepard interpolation [30].  

 

One calculates the shape of the conclusion in the second 

step by the SURE-p [10] method using the observation and 

the interpolated rule. 

 

A. Polar cut 

 

The FEAT-p and SURE-p methods use polar cuts in course 

of the fuzzy sets’ shape calculation. The concept of polar 

cuts is based on the application of a polar coordinate 

system that is placed at the reference point of the set (Fig. 

2).  

 

A polar cut describes one point on the shape of a fuzzy set. 

It consist of a value pair { }θρ, , where ρ  is the polar 

distance of the point and θ  is the corresponding polar 

angle (Fig. 2).  

 

Similar to the case of α-cuts an extension and resolution 

principle can be formulated for polar cuts as well stating 

that each convex fuzzy set can be decomposed into polar 

cuts and can be composed from polar cuts.  

 

B. The FEAT-p method 

 

The Fuzzy sEt interpolATion based on polar cuts [14] aims 

the creation of a new fuzzy set in a given point of a 

universe of discourse called interpolation point. The 

calculations are based on a supposed regularity between the 

known sets of the partition. It also uses the concept of 

Linguistic Term Shifting (LTS) [13] and polar cuts. 

 

Conform to LTS, first all known sets of the partition are 

shifted horizontally in order to reach the coincidence 

between their reference points and the interpolation point. 

Next the shape of the new set is calculated by its polar cuts. 

Each polar length is determined as a weighted average of 

Fig. 1. Antecedent space of the raw fuzzy system 
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Fig. 2. Reference point and polar cut 
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the corresponding polar lengths of the overlapping known 

sets. 

 

The weighting is based on the original distance of the sets 

from the interpolation point. Some applicable weight 

functions are presented in [14]. 

 

C. The SURE-p method 

 

The antecedent sets of the interpolated rule generally are 

not identical with the observation sets in all input 

dimensions. Therefore the conclusion is determined by a 

special single rule reasoning method that modifies the 

consequent sets of the new rule taking into consideration 

the similarity between the observation and the rule 

antecedent sets.  

 

The Single rUle REasoning based on polar cuts [10] first 

calculates for each polar cut and for each input dimension 

the difference between the polar length of the observation 

and the polar length of the rule antecedent set. Next an 

average difference is determined for each polar level and 

the consequent polar lengths are modified by this resulting 

difference.  

 

The final shape of the conclusion fuzzy set is determined 

by a control and correction algorithm that ensures the 

avoidance of the abnormal set shapes. 

 

IV. MODEL IDENTIFICATION 

 

Fuzzy model identification aims the determination of the 

antecedent and consequent fuzzy sets and the rule base that 

describes the relation between the input and output of the 

system. 

 

Due to its advantages regarding the reduced system 

complexity, the application of methods that result in sparse 

rule bases seemed to present the best solution. Generally 

there are two main ways to produce a rule base with 

reduced number of rules. The first one starts with a dense 

rule base and reduces the number of rules by either 

eliminating the rules considered as non-relevant or merging 

the nearest (similar) rules (e.g. solutions based on 

evolutionary algorithms were proposed by Botzheim, 

Cabrita, Kóczy and Ruano [2], by Botzheim, Hámori and 

Kóczy [3], as well as by Kóczy, Botzheim and Gedeon 

[20]). 

 

The methods following the second way create directly a 

rule base that not ensures a full coverage of the input space. 

One can distinguish here three different approaches. The 

first one endeavors to identify the so called optimal fuzzy 

rules [17][18]. The second one generates partitions and 

rules applying fuzzy clustering [4][5][16][31][32][36].  

 

A. The RBE-DSS method 

 

The Rule Base Extension with Default Set Shapes (RBE-

DSS) [15] was developed for the identification of MISO 

and SISO fuzzy models from sample data. However, it also 

can be applied in case of multiple output phenomenon by 

generating separate rule bases for each output dimension. 

 

The basic idea of the method is that one creates first a 

starting rule base containing only two rules, which describe 

the minimum and the maximum output of the modeled 

process (see fig. 1). Next an iterative tuning algorithm is 

started that applies a hill climbing approach by modifying 

with a predefined step each parameter value one-by-one in 

both the lower and upper directions and testing the system 

in case of each new parameter value against the sample 

data set. 

 

If the amelioration of the system performance slows down 

or even stops the method generates a new rule in order to 

improve the system. The new rule is created in that point 

where the difference between the prescribed output and 

calculated output of the system is maximal. One calculates 

the shapes of the new linguistic terms using so called 

default set shapes, which means that for each partition a 

prototype fuzzy set is defined at the beginning. Its type and 

parameters depend on the characteristic shape type and the 

width of the partition. 

 

The model identification stops when either the performance 

index becomes better than a prescribed threshold value or 

the preset iteration limit is reached. 

 

B. Performance index 

 

After each parameter adjustment the resulting parameter set 

is evaluated by calculating the system output for a 

collection of predefined input data, for which the expected 

output values are known. In order to compare the results 

obtained with different parameter sets a performance index 

is calculated after each system evaluation. 

 

There are several applicable performance index types [6]. 

We  used the relative value of the root mean square 

(quadratic mean) of the error (RMSEP) as performance 

index for the evaluation of the fuzzy system. We chose it 

owing to its easy interpretability. The value of the root 

mean square (quadratic mean) of the error [34] is 

calculated by 
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where M is the number of training data points, jy  is the 

output of the j
th

 data point and jŷ  is the output calculated 

by the system. 

 

The relative value of RMSE to the range (RMSEP) 

expressed in percentage is determined by 

 100⋅=
DR

RMSE
RMSEP , (3) 

where DR  is the range of the output dimension.  

 

V. PETROPHYSICAL PROPERTIES 

 

One of the key tasks in course of the analysis of petroleum 

well log data is the prediction of petrophysical properties 

corresponding to specific input data, i.e. depth values 

different from the original ones used by the experiments. 

Such properties are the porosity, permeability and volume 

of clay [35]. The expensive and time consuming character 

of the data collection from boreholes increases the 

significance of the prediction. The predicted values help 

taking decisions on rentability of the exploration of a 

specific region. 

 

Our research task was to create a fuzzy model with low 

complexity that is applicable for the prediction of porosity 

(PHI) based on well log data described by three input 

variables. These are the gamma ray (GR), deep induction 

resistivity (ILD) and sonic travel time (DT). 

 

VI. EXPERIMENTAL RESULTS 

 

For the sake of easier comparability with the previously 

published results ([35] and [8]), the same training and 

testing data sets were used as it was introduced in [35]. The 

training data set consisted of 71 data points and the testing 

data set consisted of 51 data points. The data were 

preprocessed and each variable was normalized to the unit 

interval. 

 

In course of the model identification and testing we used 

the Fuzzy Rule Inerpolation (FRI) and RuleMaker Matlab 

toolboxes. Both of them are available under GNU GPL 

from [38]. 

 

The FRI ToolBox [12] contains the implementation of 

eleven interpolation based fuzzy inference methods and 

supports the testing of fuzzy systems as well as the 2D and 

3D visualization of the fuzzy sets and rule base. 

 

Our RuleMaker ToolBox supports the automatic fuzzy 

model identification from input and output sample data. 

The user can choose fuzzy clustering or RBE based 

approaches, can apply four parameterization modes and 

seven performance indices. The performance of the system 

and the results are visualized using graphical and 

alphanumerical output. 

 

The applied inference technique was FRIPOC [10] 

combined with the COA defuzzification and we used RBE-

DSS [9] for system generation and tuning. The antecedent 

and consequent partitions of the final system are presented 

on figures 5, 5, 7, and 7. The rule base of the tuned system 

is sparse. Fig. 4. visualizes the antecedent space of the rule 

base each rule antecedent being represented by a cube 

defined by the supports of the antecedent sets of the rules. 

 

The fuzzy system was generated using RMSEP as 

performance index. In order to compare the results with 

those published in [35] we also evaluated the final system 

against the training and testing data set by the correlation 

factor (4), which was used in [35] as a prediction accuracy 

indicator. 
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In case of the training data set the new system showed a 

better performance than the previously published ones. 

However in case of the testing data the correlation between 

the prescribed output and the calculated one was slightly 

worser than in case of the system applying the LESFRI 

inference method. Table 1. presents the correlation factor 

values obtained after the evaluation of our system and 

those published in [35] and [8]. 

 

An advantageous feature of the new system is that the 

number of linguistic terms and rules is significantly 

reduced in comparison to [35]. For example while the 

system presented in [35] was based on 63 rules, our version 

contains only 37 rules. However, it should be mentioned as 

a drawback that the cost of the better performance index 

was an increase in the number of the rules and linguistic 

terms compared to the system described in [8]. 

 

Besides, as a result of the improvement of the tuning 

algorithm the shapes of the membership functions of the 

 
TABLE 1. Correlation factor values 

 
Correlation Factor 

Applied method 
Training data Testing data 

MACI [35] 0.917 0.865 

RBE-DSS + LESFRI [8] 0.934 0.890 

RBE-DSS + FRIPOC  0.966 0.880 

 
TABLE 2. Number of fuzzy sets in the input and output dimensions 

 
Applied method GR FS DT PHI Σ 
[35] 6 4 4 5 19 

[8] 8 7 9 7 31 

Curr. 13 8 11 7 39 
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input and output partitions (presented on fig. 5, 5, 7, and 7.) 

are more nice and interpretable than those in [8]. However, 

they are not so uniform as the triangle shaped ones 

introduced in [35]. 

 

Another advantage of the current solution as well as of the 

one presented in [8] is that owing to the application of the 

fuzzy rule interpolation methods FRIPOC and LESFRI the 

fuzzy system is able to produce an interpretable output for 

each possible input value. This property was nnot ensured 

in case of system [35]. 

 

III. CONCLUSIONS 

 

This paper presented a practical application of the method 

pair RBE-DSS and LESFRI. The automatic fuzzy model 

identification was successfully applied in case of a real 

world problem, the prediction of porosity (PHI) from well 

log data knowing three measured values the gamma ray 

(GR), the deep induction resistivity (ILD) and the sonic 

travel time (DT). 

 

The resulting system showed a better performance index 

than the previously published solutions ([35] and [8]). This 

result was achieved with rule number that was between the 

rules required by the previous solutions. Future research 

will be focused on the stability analysis [33] of the 

generated systems. 
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