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Abstract: Systems based on interpolative fuzzy reasoningk wgth sparse rule bases. In
case of some input values the system should appedeithe output value. Carrying out
this task depends on the right selection of theableé fuzzy similarity measure. The goal of
this paper is presenting two of such measures,hwdnie also applied in some interpolation
based fuzzy reasoning methods.
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1 Introduction

The functioning of reasoning systems working witlady logic is based on rules. If a
system in case of an input value (observation) am¢glispose of at least one rule whose
antecedent part contains a linguistic term whog®paer contains the observed value, the
system should approximate the output value takiig tonsideration the existent rules.
The adoption of interpolative techniques is thet Isetution for such cases. The similarity
measurement of non overlapping or non intersecfimzrgy sets and the similarity
measurement of a fuzzy set and a singleton areobmiee fundamental questions of the
fuzzy interpolation. The most obvious way of ca#tidg this similarity is based on
distance measurement.

There are a lot of distance measures in the litezatvhich are more or less suitable
for different tasks in fuzzy logic. In terms of theerpolation a method can be considered
as advantageous if it has low computational conitylend the information describing the
shape of the membership function is not lost dutiregcalculations.



In other terms a distance measure would be usehith could give the chance of the

reconstruction of a fuzzy set from another set fach their distance, at least in the one
dimensional case. In this paper we would like tooiduce two of such measures, which are
also applied in some interpolation based fuzzyaeiag methods.

2 Fuzzy distance

The fuzzy distance introduced by Koczy in [1] fldfthe requirements specified in
previous section. It is based on theuts of the two fuzzy sets. It is expressed bymaez
a fuzzy set which is defined over the interval [Ola the case of calculations the Euclidean

distances between the end points ofdtmits are considered. These are called Ioud{f'x

and upper dfj’ ) distances and are calculated by formulas (1) @)dA fuzzy partition

containing two non overlapping triangle shaped yugets is presented on the left side of
Fig. 1. The lower and upper distances are indicitethe levelo=0.6. On the right side the
lower and upper distances are plotted against
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If the universe of discourse is multi-dimensiontile distances between iw},
inf{ By} and supfAg}, sup{By} can be defined in the Minkowski sense:
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Fig. 1. Non overlapping fuzzy sets and their Kédstance

An important requirement for the existence of thezf distance is that all the
comparable fuzzy sets should be convex and norptherwise somen-cuts are not
connected or do not exists at all, which makesdibtance corresponding to theseuts
meaningless. The only disadvantage of using theyfudistance for interpolative fuzzy
reasoning is that it is little bit difficult to hdfe. The interpolation method proposed by
Kéczy and Hirota in [5] is based on the fuzzy dise and it is a fuzzy extension of the
classical linear interpolation. It is called thenfiamental equation of fuzzy rule



interpolation [4]. The consequence fuzzy set iieined in resolution form as a union of
a-cuts, which are calculated by means of the Sheipgtholation. The weak point of tle
-cut based interpolation is that we should find twe nearest rules which surround the
observation and in the case of arbitrary shapedeonormal fuzzy sets theoretically an
infinite number ofa-levels should be taken into account for a properctusion [4], which
could be a time consuming task.

3 Distance measurement in vague environment

Klawonn introduced a new approach to handle impeeaumbers in [2]. He used the
concept of vague environment, which is based onfabethat the real numbers resulting
from different measurements or settings never aaexact. In practice the values whose
distance from a nominal value is less than an ardolerance bound are identified as the
nominal value. Thus two numbers @nd %) can not be distinguished if their distanég) (
is not greater than the width of the tolerancerirgtk(e) (5). With other word xand x aree
indistinguishable if the inequality (5) is satigfie

(%, %)< € 5)

The distance of two points can be measured witfergifiit unit of measurement e.g.
cm and inch, which needs differenvalues for the same resutlawonn suggests the use
of a scaling factor (function) for the avoidancehi$ problem in the distance measurement.
Choosing a scaling factor whose value is not costathe universe of discourse makes
possible the measurement with different precisiondifferent intervals depending on
reliability or importance of the acquired data. Tinéroduction of the scaling function
means a transformation, which maps the originaeaof values to the interval [g).

3.1 Distance in vague environment

The concept of vague environment [2] is characteriay its distance functioi. This
distance is a transformed one, derived from thes@tal Euclidean distance and can be
expressed by the formula (6). It can be considerateighted distance whose weighting
factor is the scaling function (s(x)).
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Fig. 2. Fuzzy set of points x which aréndistinguishable from x



The set of the points whosedistance from a given point ¥s not greater thas can
be considered as a fuzzy set.dtsuts contain the points which arel-a indistinguishable
from X,.

From an other approach a fuzzy set can be desciibie vague environment with a
characteristic point g representing the core and the scaling functistudging the shape
of the set if the membership function is non-desirgg@for values smaller than &nd it is
non-increasing for values greater than x

If it is possible to describe all the fuzzy padits of the antecedent and consequent
universes of the fuzzy rule-base, and the obsenvasi a singleton, one can calculate the
similarity measures of the antecedent fuzzy setthefrule-base and the observation, and
the similarity measures of the consequent fuzzy aatl the consequence (we are looking
for) as vague distances of points.

3.2 The adequate scaling function

For generating a vague environment we have to diméppropriate scaling function,
which describes the shapes of all the terms inftizey partition [3]. There are three
demands made on the scaling function. It shouléhtegyrable in the examined interval, it
should give a good description of the shape of ftiezy set and it should have low
computational complexityThe description can be considered suitable onityigf possible
to reconstruct the original fuzzy set from the dateristic point and the scaling function.
The fuzzy partition can be easily described ushegdcaling function (3) suggested in [2] if
the partition contains only one fuzzy set or thes sge not overlapping and each member
function is piecewise linear, continuous and défgrable. A partition with two non
overlapping sets and its scaling function are preskin Fig. 3.
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Fig. 3. Scaling function

The partition of a universe of discourse very oftentains overlapping fuzzy sets. In
this case the application of (3) is bound to théiskection of two conditions. The
membership function should be triangle or trapeatidped and the partition should be a
Ruspini one. In case of non fulfilment of the abawentioned conditions either a separate
scaling function is needed in case of each fuzzyfaethe description of the intervals
containing overlapping membership functions or ppraximate scaling function is needed,
which can describe the overlapping sections of beighbouring sets.



3.3 The approximate scaling function

The approximate scaling function is an approxinratid the original scaling functions

describing the fuzzy sets separately. The simplest of generating this function is the
linear interpolation (4) of the right side scalifagtor of the left neighbouring term and the
left side scaling factor of the right neighbouribegm.
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where x- the core of the"i set, SlL ,S,R - the left and right side scaling factors of tHesét,
n - the number of the sets.

The drawback of the approximation (4) is that ib g@t handle the big differences
between neighbouring scaling factors or crisp fuzmsts correctly. In case of big
differences, the bigger scaling factor “dominatdsie smaller one. If one of the
neighbouring fuzzy set is crisp (its scaling facisrinfinite), the slope of the linearly
interpolated scaling function is infinite too, soth the fuzzy sets described by this scaling
function will be crisp. As a solution of this prelh the adoption of a non-linear
interpolative function is suggested in [3].
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where XJ[x;,x+1) O i0[1,n-1], k - constant factor of sensitivity for gabouring scaling
factor differences.

The above function has same useful propertieselfneighbouring scaling factors are
equals, &( is linear. If one of the neighbouring scalingttas (e.g. &) SIR — 00 and the

other one is finite, in case OKD[Xi,Xi+1) = s(x) is infinite in the neighbourhood of x
and its value is null in any other point of theeinal. Similarly if S|L+1 — 0o and SR is

finite and XD[Xi,Xi+1) = s(x) is infinite in the neighbourhood of xand its value is null
in any other point of the interval.
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Fig. 4. Original and reconstructed fuzzy partition

Fig. 4. presents a fuzzy partition and its recamcséd version in case of the
application of the scaling function (5). The vabfel was used for the constant k.

If all the vague environments of the antecedent@nsequent universes of the fuzzy
rule base can be generated, the fuzzy rules cachéeacterised by points in the vague
environment of the fuzzy rule base too. In thisecd® approximate fuzzy reasoning can be
handled as a classical interpolation task. So aterpolation, extrapolation, or regression
methods can be adapted very simply for approxifuetey reasoning [3].

4 Conclusions

Distance based similarity measures of fuzzy sete laahigh importance in reasoning
methods handling sparse fuzzy rule bases. Theantecedents of the sparse fuzzy rule
bases are not fully covering the input universeeréfore the applied similarity measure has
to be able to distinguish the similarity of non-daegping fuzzy sets, too. The distance
based similarity measures are such a measuresiv&@ag overview of the distance based
similarity measures of fuzzy sets, two of the makisting concepts are briefly introduced
in this paper.
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