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Abstract—This paper aims the introduction and comparison of 

two novel fuzzy system generation methods that implement the 

concept of incremental Rule Base Extension (RBE). Both 

methods automatically obtain from given input-output data a low 

complexity fuzzy system with a sparse rule base. 
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I.  INTRODUCTION 

Owing to the powerful hardware development the 
generation of fuzzy systems from input-output data came into 
lime light in the last few years. This paper introduces two novel 
methods aiming the incremental generation of fuzzy systems 
from data by creating first two starting rules and than extending 
the rule base in course of the parameter identification process 
depending on de amelioration velocity of the performance 
index. 

The methods being presented aim the generation of 
Multiple Input Single Output (MISO) fuzzy systems. In case of 
Multiple Input Multiple Output (MIMO) phenomenon they can 
be used by producing an aggregative system that contains a 
separate subsystem for each output dimension. 

The rest of this paper is organized as follows. Section II. 
presents the parameterization strategy and the condition sets 
applicable in case of the new linguistic term generation and 
parameter identification. Section III. introduces a novel concept 
for fuzzy system generation called RBE and two methods 
based on it. Section IV. recalls the basic ideas of two fuzzy rule 
interpolation based reasoning techniques. The applied 
performance index and tuning algorithm are presented in 
section V. Section VI. presents the results of several 
experiments, aiming the testing and comparison of the two 
methods. 

II. PARAMETERIZATION AND CONDITIONS 

Due to their tractability and good tuning capability, each 
partition is built from convex and normal trapezoid shaped 
(CNF) linguistic terms. The parameterization is the 
conventional one, the break-points, i.e. end-points of the 
support and core are considered as parameters. Their ordinate 
values are fixed (0 in case of the lower base and 1 in case of the 

upper base) therefore only the abscissas have to be adjusted in 
course of the parameter identification process. The parameters 
are numbered in clockwise direction starting from the lower 
endpoint of the support (fig. 1). 

One can formulate three general conditions a CNF set 
always has to met, and two special conditions applicable only 
in case of the first variant of the method. 

A. General conditions 

The below specified conditions have to be met in course of 
the tuning in case of trapezoid shaped fuzzy sets in order to 
ensure the CNF property. 

• Starting from the second vertex the value of each 
parameter has to be greater or equal to its predecessor. 
It can be expressed by the inequality  

 41,1 ≤<≥ − kpp kk , (1) 

where kp  is the current parameter, and its subscript k 

indicates its position in the sequence of vertices. 

• In case of the first three vertices the value of each 
parameter has to be smaller or equal to its successor. It 
can be expressed by the inequality 

 41,1 <≤≤ + kpp kk . (2) 

• The reference point, in this case the midpoint of the 
core, has to be inside the range of the current linguistic 
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Figure 1. Conventional parameterization of a trapezoid shaped fuzzy set 
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variable. It can be expressed by the inequality  

 max
32

min
2

R
pp

R ≤
+

≤ , (3) 

where maxmin , RR  are the lower respective upper 

endpoints of the range of the actual input/output 
dimension. 

The last constraint is applicable only in case of inference 
methods that allow a fuzzy set situated at the margin of a range 
to lap over the touched boundary. The inference methods based 
on the concept of linguistic term shifting (LTS) [2] belong to 
this category. Both of the techniques LESFRI [3] and FRIPOC 
[2], which were used in course of the preparation of this paper, 
apply LTS. 

B. Conditions specific to the first variant of the method 

One of the advantageous features of the fuzzy systems is 
the ability to extract linguistic rules that are easily interpretable 
by humans. In order to ensure this characteristic, two 
conditions have to be met. The first one states, that the support 
of the fuzzy set being adjusted cannot overlap the core of 
another set. Considering the case of the i

th
 set from fig. 2 it can 

be expressed by 

( ) ( )131 −≥ ii ApAp ,  (4) 

( ) ( )124 +≤ ii ApAp ,  (5) 

where jp  is the j
th
 parameter of a set. 

The second condition specifies that the core of the 
linguistic term being adjusted cannot overlap the support of 
another linguistic term. It can be expressed by 

( ) ( )142 −≥ ii ApAp ,  (6) 

( ) ( )113 +≤ ii ApAp .  (7) 

Conditions (4)..(7) define weaker constraints than the 
conditions necessary for ensuring a Ruspini character of the 
partition described e.g. in [4]. We used here less strict 
conditions in order to allow creation of sparse partitions as 
well. 

III. RULE BASE GENERATION 

This section introduces the concept of fuzzy system 
generation based on Rule Base Extension (RBE) and two 
methods (RBE-DSS and RBE-SI) as its implementations. The 
methods differ only in the way they generate the shape of the 
antecedent respective consequent linguistic terms of the new 
rules, and in the conditions they apply in course of the tuning, 
therefore they are presented together. 

RBE starts with an empty rule base and a set of training 
data points given in form of coherent input and output values. 
At the beginning of the process one defines the default core and 
support width values that will be applied in case of the newly 
generated linguistic terms. These values are expressed in 

percentage of the range of the input variables that can be given 
as a specification or can be determined from the available data. 
Thus the characteristic size values of the default shape are not 
identical in each dimension unless the widths of the domains 
are equal. In case of the RBE-SI method the default set shapes 
will be used only for the generation of the first two rules. 

Next, the starting rule base is defined by determining the 
first two rules. They aim the description of the minimum and 
maximum output. First one seeks the two extreme output 
values and a representative data point for each of them. If 
several data points correspond to an extreme value, one should 
select the one that is closer to an endpoint of the input domain. 
For example, in the case of the function (11) the maximum 

value appears twice, at 
2

π  and at 
2

5π  (see fig. 4). We 

selected the first one, because it is closer to the lower bound of 
the studied x interval.  

The reference points of the antecedent sets of the first rule 
will be identical with the corresponding input values of the 
minimum point. The reference point of the consequent set will 
be identical with the output value of the minimum point. The 
shape of the linguistic terms is determined by the default set 
shape, which is a characteristic feature of the dimension. The 
antecedent and consequent linguistic terms of the second rule 
are determined in a similar way taking into consideration the 
maximum point. 

At this point the system contains two linguistic terms in 
each dimension. In order to fulfill the conditions specified in 
the previous section, the widths of the cores and supports are 
shrunk the same amount if it is necessary. However, their 
reference points are kept always unmodified. In case of a 
coincidence in any of the dimensions the sets are unified and 
only the first specified set is kept. 

Having the first two rules determined, next a parameter 
identification process is started, which interactively adjusts the 
values of the inference parameters and the parameters of the 
linguistic terms. The details of the applied algorithm are 
presented in section V.B. If the decreasing velocity of the root 
mean square error (RMSE) (8) applied as performance indicator 
of the system falls below a specified threshold after a system 
evaluation a new rule is generated. It is because the system 
tuning reached a local or global minimum of RMSE and the 
performance cannot ameliorate further by the applied 
parameter identification algorithm. The new rule introduces 
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Figure 2. Neighboring sets fulfilling the special conditions (4)..(7) 
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additional tuning possibilities. However, in some cases RMSE 
will increase temporarily after the insertion of the new rule into 
the rule base. 

In order to create the new rule, one seeks for the calculated 
data point, which is the most differing one from its 
corresponding training point. The input and output values of 
this training point will be the reference points of the antecedent 
and consequent sets of the new rule. The shape of the new 
linguistic terms is determined in two different ways by the two 
methods introduced in the followings.  

The method Rule Base Extension using Default Set Shapes 
(RBE-DSS) applies a similar technique as seen in the case of 
the second rule. One starts with the default set shapes and than 
adjusts the core and support width values of the new sets and 
the neighboring linguistic terms as well conform to the 
conditions (1)..(7). 

The method Rule Base Extension using Set Interpolation 
(RBE-SI) aims the minimization of the possible drawbacks of 
the introduction of the new rule. In the interest of better system 
performance it creates the antecedents and the consequent of 
the new rule by applying a set interpolation. Here the used 
technique depends on the applied fuzzy reasoning method. 
While in case of FRIPOC [2] the method FEAT-p [2] serves 
for the determination of the shape of the new linguistic terms, 
in case of LESFRI [3] the technique FEAT-LS [3] is used for 
the same purposes.  

In order to alleviate the excessive increase of linguistic 
terms as a result of new rule generation two meta-rules are 
applied. The first one states that if the distance between the 
reference point of the new linguistic term and the reference 
point of an old fuzzy set is smaller or equal than a specified 
threshold value, instead of creating a new linguistic term, the 
old set is used as antecedent/consequent of the new rule in the 
current input/output dimension. The threshold value is 
expressed in percentage of the range of the actual partition. Its 
default value is 0.01 %. 

The second meta-rule allows the merging of the new 
linguistic set and an old set of the partition, when the average 
distance between their corresponding parameters is smaller or 
equal than a specified threshold. Also in this case the threshold 
is expressed in percentage of the range of the actual partition. 
Its default value is 0.1 %. 

Further on, the last two steps (parameter adjustment and 

new rule creation) are repeated until the specified iteration 
number has been reached, or the value of RMSE falls under a 
prescribed threshold. 

IV. INFERENCE TECHNIQUES 

Both of the fuzzy system generation methods RBE-DSS 
and RBE-SI produce a sparse rule base in most of the cases. 
The “sparse” attribute means that there are no rules for all the 
possible input values. For example fig. 3 presents the input 
space of a system applying a sparse rule base. There are two 
input dimensions and the rule base consists of five rules. Each 
rule antecedent is represented by a pyramid. In case of the 
observation A* there is no rule whose antecedent part would 
overlap the observation at least partially. Therefore the 
classical compositional reasoning methods cannot afford an 
acceptable output and special approximate inference techniques 
are needed. In [7] Perfilieva studies the solvability of a fuzzy 
system approximating a given set of fuzzy data (fuzzy points), 
by compositional rule of inference, where the fuzzy rules are in 
the form of fuzzy implication. 

Section IV.A and IV.B present shortly the basic concepts of 
two methods, which are applicable in cases when the full 
coverage of the input space is not ensured. 

A. Fuzzy Rule Interpolation based on Polar Cuts 

(FRIPOC) 

The first method we used in course of the experiments as 
fuzzy inference technique is FRIPOC. It was introduced in [2] 
and also belongs to the group of two-step fuzzy rule 
interpolation techniques. In the first step it determines a new 
rule whose antecedent is situated in the same position as the 
observation, i.e. their reference points are identical in each 
antecedent dimension. The shape of the antecedent and 
consequent linguistic terms is calculated by a set interpolation 
technique that is based on the concept of linguistic term 
shifting and polar cuts. The position of the consequent sets is 
determined by an adapted version of the Shepard interpolation 
[8]. 

The fuzzy sets representing the final conclusion are 
determined in the second step of FRIPOC applying a special 
single rule reasoning technique, which is also based on polar 
cuts and determines the shape of the new linguistic term going 
out from the differences between the antecedent sets of the 
interpolated rule and the sets that represent the observation. 

B. Fuzzy Rule Interpolation by the Least Squares Method 

(LESFRI) 

The second method applied as fuzzy rule interpolation 
based reasoning technique was LESFRI [3]. It was developed 
for the case when all linguistic terms can be characterized by 
the same shape type and the break-points in case of piece-wise 
linear membership functions are situated at the same α-levels. 

LESFRI also belongs to the group of two-step methods. In 
the first step it determines the antecedent and consequent 
linguistic terms of the new rule applying the concepts of LTS 
and weighted least squares (WLS). Thus the resulting set 
shapes always belong to the characteristic shape type of the 

 

Figure 3. Antecedent space of a sparse rule base 
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partition. Similar to FRIPOC the position of the consequent 
sets is determined by an adapted version of the Shepard 
interpolation [8]. The shape of the conclusion is calculated by 
preserving the weighted average difference measured between 
the observation and the antecedent of the interpolated rule on 
the consequent side and applying WLS. 

V. PARAMETER IDENTIFICATION 

A. Performance Index 

In course of the parameter identification process after each 
parameter adjustment the resulting parameter set is evaluated 
by calculating the system output for a collection of predefined 
input data, for which the expected output values are known. In 
order to compare the results obtained with different parameter 
sets a performance index is calculated after each system 
evaluation. 

Our algorithm uses the root mean square (quadratic mean) 
of the error (RMSE) as performance index for the evaluation of 
the fuzzy system. We chose it owing to its good 
comprehensibility and comparability to the range of the output 
linguistic variable. Its value is calculated by 

 

( )

M

yy

RMSE

M

j

jj∑
=

−

=
1

2
ˆ

, (8) 

where M is the number of training data points, jy  is the 

output of the j
th

 data point and jŷ  is the output calculated by 

the system. 

B. Parameter Identification Algorithm 

The parameter identification method used in course of the 
calculations is a heuristic algorithm, a variant of the gradient 
descent method like the technique presented in [10]. Our 
algorithm starts the tuning with the parameters of the applied 
fuzzy inference method and continues with the adjustment of 
the parameters of the input and output linguistic terms. The 
final system considered as optimal (corresponding to a local or 
global minimum of RMSE) is iteratively approximated. 

In course of iteration each parameter is modified one by 
one in both of the possible upper and lower (increasing and 
decreasing) directions. After determining a new value for the 
current parameter the system is evaluated calculating the actual 
value of the performance index. If this is better than the 
previous minimum the new parameter value is stored (“hill 
climbing”). 

The amount of modification of the set parameters is 
dependent on the range of the current input/output dimension, 
i.e. the step is calculated by multiplying the range by a 
coefficient. We use an adaptive approach, which determines 
the actual value of the coefficient depending on the change of 
RMSE during an iteration stage, the history of previous 
iteration stages, and a prescribed minimum value for the 
coefficient (Cmin). For the calculation of Cmin we determine first 
the range of each linguistic variable 

 outinjjj nnjRRDR +≤≤−= 1,minmax , (9) 

where inn  is the number of the input dimensions, minjR  

and maxjR  denote the lower respective upper endpoints of the 

current (j
th
) dimension. The threshold for the coefficient is 

 
( )

j
nnj

dn

DR
C

outin ],1[
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min

10

+∈

−

= , (10) 

where dn is the maximal number of decimals used by the 
description of the parameters. 

The iteration starts with a prescribed value of the 
coefficient (default: 0.2). If the improvement of the system 
slows down or even stops, i.e. the value of RMSE does not 
reduce more than a prescribed threshold (default: 0.01) during 
one iteration, the coefficient is divided by two unless its vale is 
already equal to Cmin. In that case we generate a new rule. 

On the other hand the coefficient is increased multiplying it 
by two when the improvement of the system speeds up, i.e. the 
value of RMSE increases more than a specified threshold 
(default: 10) during one iteration. The algorithm also stops 
when the prescribed number of iteration is done. 

VI. EXPERIMENTAL RESULTS 

In course of the experiments we used two data sets, one 
having one input and one output dimension and one having two 
input dimensions and one output dimension. In case of the first 
data set the data were generated by the function (see fig. 4) 

[ ]10,0,sin ∈= xxy
, (11) 

where the value of x is interpreted in (radian) in course of 
the calculations.  

The second data set were generated by the function 

( ) [ ]8.1,8.01
25.1

2

2

1 ∈++= −− xxxy
. (12) 

It is the same function as used in [1], [9] and [10]. Fig. 5 
shows the surface described by the second function. The 
systems were trained to the fuzzy rule interpolation based 
inference techniques FRIPOC [2] and LESFRI [3] separately. 
The time demand of one iteration could be different in case of 
the studied methods. 

 
Figure 4. The first function 
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It is because they do not apply the same constraints for the 
newly calculated value of the parameter being adjusted. Thus it 
easily can happen that after applying the specified conditions 
one gets back the original value of the parameter. Under such 
circumstances no system evaluation is made and therefore the 
time need is negligible. 

In order to ensure the comparability of the methods the 
horizontal axis indicates the number of system evaluations (SE) 
on figures showing the variation of the performance in course 
of the process (see e.g. fig. 6). During a system evaluation one 
calculates the output for all values belonging to the training 
data set, and calculates the performance index. 

A. The SISO system 

In case of the SISO system, which approximates function 
(11), RBE-DSS ensured the best results by both reasoning 
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Figure 6. RMSE in course of the tuning of the first system for LESFRI with 

both methods 
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Figure 7. RMSE in course of the tuning of the first system for FRIPOC with 

both methods 

 
Figure 8. Rule base of the best performing system tuned for the first function   

with the RBE-DSS method and the LESFRI inference technique 
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Figure 5. The second function 
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Figure 9. RMSE in course of the tuning of the second system for LESFRI 

with both methods 
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Figure 10. RMSE in course of the tuning of the second system for FRIPOC 

with both methods 

 
Figure 11. Antecedent space of the system tuned for the second function with 

the RBE-SI method and LESFRI inference technique 
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techniques (see fig. 6 and fig. 7). The performance curve of 
RBE-DSS shows some repetitive salient portions, which 
correspond to the introduction of new rules. In case of RBE-SI 
some protuberances also can be recognized, but these are much 
milder. Hence it can be stated that our expectations regarding 
the positive effects of the application of set interpolation were 
only partly fulfilled. The introduction of a new rule was not 
followed by a temporarily increase of the value of RMSE as it 
has been seen by RBE-DSS, but the error measure also did not 
decrease sufficiently in course of the examined number of 
system evaluations.  

This case the better performance index values were 
obtained by the inference technique LESFRI. The rule base of 
the tuned system is represented on fig. 8. If one compares it 
with fig. 4 it can observe easily that the rules are grouped at the 
turning points of the function, like by the so-called optimal 
fuzzy rules discussed by Kosko in [6]. Probably the same 
results could be obtained by a smaller number of rules as well 
by an improved tuning algorithm. This topic is subject to 
further research work. Table I. presents the RMSE values of 
the final systems. 

TABLE I.  RMSE VALUES AT THE END OF THE PROCESS OF GENERATING 

THE FIRST SYSTEM 

 LESFRI FRIPOC 

RBE-DSS 0.0709 0.0915 

RBE-SI 0.2252 0.3742 

 

B. The MISO system 

In case of the MISO system, which approximates function 
(12), there are also observable peek points corresponding to the 
creation of new rules (see fig. 9 and 10). Surprisingly they 
appear significantly in case of the set interpolation based rule 
base extension as well. In case of both figures some portions of 
the performance curves are overlapped and therefore the one 
corresponding to RBE-SI is indicated by a bold line. 

This case the final RMSE values obtained by the two 
methods are more similar. However the best performance is 
attained by RBE-SI in course of the tuning of the system for 
inference technique LESFRI. The input space (rule 
antecedents) of the best tuned system is represented on fig. 11. 
Table II. presents the RMSE values of the final systems. 

TABLE II.  RMSE VALUES AT THE END OF THE PROCESS OF GENERATING 

THE SECOND SYSTEM 

 LESFRI FRIPOC 

RBE-DSS 0.2701 0.4143 

RBE-SI 0.1809 0.2143 

 

VII. CONCLUSIONS 

This paper introduced a new approach called the concept of 
Rule Base Extension (RBE) and two automatic system 
generation methods (RBE-DSS and RBE-SI) based on it. One 
of their important features is that in most of the cases the 

resulting rule base is sparse, which ensures a reduced system 
complexity. However, this character implies the application of 
Fuzzy Rule Interpolation (FRI) based reasoning techniques. 
Both methods can be used for the improvement of the design of 
fuzzy logic controllers for non-linear systems introduced in 
[11]. 

The experimental results with two FRI based inference 
techniques (LESFRI and FRIPOC) showed that good system 
performance can be obtained by both of the RBE-DSS and 
RBE-SI methods. The grouping of the rules (see fig. 8) in case 
of the SISO system proved the expectation that the coverage by 
rules of the functions’ turning points plays a significant role in 
system performance. The improvement of the tuning algorithm, 
the influence of the selection of its parameters, and the 
applicability of the methods in case of other FRI techniques are 
subject to further research work. 

The Matlab implementation of the presented system 
generation methods can be freely downloaded from [12]. This 
website is dedicated to a fuzzy rule interpolation Matlab 
toolbox development project (introduced in [5]) aiming the 
implementation of various FRI techniques. 
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