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Single Rule Reasoning (SRR) methods aim the determination of the conclusion 
from the observation and an intermediate (interpolated) rule. They are applied in 
fuzzy systems, which use an inference technique that follows the concepts of the 
Generalized Methodology (GM) [1] of Fuzzy Rule Interpolation (FRI). 

This paper surveys and evaluates three SRR methods, namely SURE-p [2], 
SURE-LS [4] and REVE. The first two are overviewed briefly by recalling their 
main steps and essential features that are necessary for the evaluation and 
comparison. REVE is a new method based on the concept Vague Environment 
(VE). Therefore the paper contains its presentation in details. 

1. Introduction 

One reason of the wide popularity of Fuzzy Logic Systems in various 
application areas, such as control engineering, expert systems, pattern 
recognition, operation research, decision support systems etc. is inherited from 
the benefits of the rule based knowledge representation. In the most common 
Zadeh-Mamdani-Larsen Fuzzy Logic Reasoning method, where the original 
concept of Zadeh about linguistic terms [16] is applied for reasoning by 
Compositional Rule of Inference (CRI), as it is was proposed by Mamdani [11] 
and Larsen [10], the knowledge is represented by fuzzy rules.  

Both the antecedents and the consequents of the Zadeh-Mamdani-Larsen type 
fuzzy rules are built up on fuzzy linguistic variables (fuzzy sets). The rules of the 
fuzzy rule base are interpreted as relations and the conclusion is formed as the 
composition of the observation fuzzy set and the fuzzy rule base relation.  

Another popular fuzzy rule based reasoning method was introduced by Takagi 
and Sugeno in [12] and [13]. In their fuzzy rule representation the antecedents of 
the rules are similar to those that are used by Zadeh-Mamdani-Larsen method, 
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but the conclusions are crisp functions of the input variables. In the Takagi-
Sugeno type reasoning process the matching of the fuzzy observation and the 
fuzzy rule antecedents is interpreted in a similar way as in the CRI, but the 
conclusion (having crisp functions instead of fuzzy set rule consequences) is 
formed as a convex combination of the rule consequent functions weighted by 
the level of rule matching of the corresponding rules. 

Both of the above mentioned classical inference methods determine the 
conclusion by means of rule-matching. They match the rule premises and the 
observation, and the conclusion is calculated as a weighted combination of rule 
consequents (fuzzy set consequences, or the crisp consequent function) with 
non-zero matching, where weights depend on the degree of matching.  

Therefore, if the antecedent parts of the fuzzy rules are not covering sufficiently 
the observation space, may exists an observation that does not match to any of 
the rule antecedents, and hence the classical fuzzy rule inferences can not gain 
any conclusion. Such rule bases are called “sparse” fuzzy rule bases. They can 
arise from incomplete expert knowledge (lack of knowledge), inadequate 
parameter optimisation (system “tuning”), or as a result of a complexity 
reduction by eliminating rule redundancies. In any of the above mentioned cases 
of reasoning situation, an observation may appear from which the classical fuzzy 
inference cannot generate meaningful conclusion. 

Such situations can be treated by non-classical fuzzy reasoning techniques, 
namely approximate fuzzy inference methods. Most of these methods are based 
on Fuzzy Rule Interpolation Techniques (FRIT). FRITs can provide reasonable 
(interpolated) conclusions even if none of the existing rules fires under the 
current observation. Therefore the rule base of a system applying a FRIT is not 
necessarily complete; it should contain only the most significant fuzzy rules 
without risking the chance of having no conclusion for some of the observations. 

Since 1991 numerous FRITs have been proposed. They can be divided into two 
main groups. The first group produces the approximated conclusion from the 
observation directly; therefore its members are called “one-step” methods. The 
members of the second group reach the target in two steps. In the first step they 
interpolate a new rule whose antecedent part overlaps the observation at least 
partially. The estimated conclusion is determined in the second reasoning step 
by a Single Rule Reasoning (SRR) method based on the similarity of the 
observation and the antecedent part of the newly interpolated rule. The “two-
step” methods follow the concepts laid down by the Generalized Methodology 
(GM) of Fuzzy Rule Interpolation (FRI) introduced in [1] by Baranyi et al.  

The rest of this paper is organised as follows. Section 2 defines a set of 
conditions for the evaluation and comparison of different SRR methods. Section 
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3 and 4 surveys briefly and evaluates the techniques SURE-p and SURE-LS. We 
introduce and evaluate a new revision method called REVE in section 5. 

2. Conditions on revision methods 

In order to facilitate the evaluation and comparison of the techniques being 
surveyed we have compiled a set of conditions based on the General Conditions 
on rule interpolation methods introduced in [5]. They are the followings. 

1. Avoidance of the abnormal conclusion. The estimated fuzzy set should be a 
valid one. This condition can be described by the constraints (1) and (2) 
according to [14]. 
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where inf and sup are the lower and upper endpoints of the current α-cut of 
the fuzzy set. 

2. Compatibility with the rule base. This means the condition on the validity of 
the modus ponens, namely if an observation coincides with the antecedent 
part of a rule, the conclusion produced by the method should correspond to 
the consequent part of that rule. 

3. The fuzziness of the approximated result. There are two opposite approaches 
in the literature related to this topic [15]. According to the first subcondition 
(3.a), the less uncertain the observation is the less fuzziness should have the 
approximated consequent. The second approach (3.b) originates the 
fuzziness of the estimated consequent from the nature of the fuzzy rule base. 
Thus, crisp conclusion can be expected only if all the consequents of the 
rules taken into consideration during the interpolation are singleton shaped, 
i.e. the knowledge base produces certain information from fuzzy input data. 

4. Conserving the piece-wise linearity. If the fuzzy sets of the consequent 
partitions including here also the consequents of the intermediate rule are 
piece-wise linear, the approximated sets should conserve this feature. 

5. Applicability in case of multidimensional antecedent universe. 

6. Shape invariance. The method should be applicable for all kinds of 
linguistic term shape types. 

3. SURE-p 

The method SURE-p (Single rUle REasoning based on polar cuts) introduced in 
[2] determines the shape of the conclusion from its polar cuts. The concept of 
polar cuts originally introduced in [3] is based on the application of a polar co-
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ordinate system, whose origin is placed in the reference point of the linguistic 
term.  

Figure 1. Polar cut 

A polar cut is defined by a value pair {ρ,θ} where ρ is the polar distance of the 
point situated on the shape of the set at the polar angle θ (fig. 1). Similar to the 
case of α-cuts an extension and a resolution principle can be defined for polar 
cuts as well. The extension principle states that the solution of a problem 
regarding a fuzzy set can be found by solving it first for its polar cuts and then 
extending the results to the fuzzy case. The resolution principle expresses that a 
convex fuzzy set can be decomposed to polar cuts. 

Figure 2. Difference between the polar distance of the antecedent set and the 
polar distance of the observation at the polar level θ 

The further calculations can be simplified if the range of all the antecedent and 
consequent partitions is normalized to the unit interval ([0,1]). Therefore in the 
following this case is going to be presented. Most of the calculations of SURE-p 
can be done for each output dimension separately, therefore they can be made 
parallel if the computing environment it enables. 
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The basic idea of the method is the conservation of the average difference 
measured on the antecedent side. Therefore for each input dimension and for 
each polar level one calculates the differences between the polar lengths of the 
observation and the rule antecedent (fig. 2). Next for each polar cut the average 
distance is determined. 

The conclusion results from the revision of the consequent of the new rule by the 
average difference at the corresponding θ level. The abnormal results (e.g. fig. 3) 
are avoided by a verification and correction algorithm, which is part of the 
method as well. 

Figure 3. Abnormal conclusion 

In case of a perfect overlapping between the observation and the antecedent of 
the interpolated rule the conclusion will be the same as the consequent of the 
rule. The method does not conserve the piece-wise linearity but it is well 
applicable in case of multidimensional antecedent universes. SURE-p is shape 
invariant; its main advantage is that it can handle subnormal linguistic terms as 
well. The method fulfils conditions 1,2,3.a, 5 and 6. 

4. SURE-LS 

The revision method SURE-LS (Single rUle REasoning based on the method of 
Least Squares)[4] was developed especially for the case when all linguistic terms 
of a consequent partition belong to the same shape type (e.g. singleton, triangle, 
trapezoid, etc.) and all characteristic (break) points are situated at the same α-
levels. It also means that the height of all sets is the same.  

In such circumstances it seems to be a natural demand that the conclusion should 
also adhere to this regularity. Thus one does not seek an arbitrary shaped 
conclusion but a special form with the characteristic points having 
predetermined ordinate values. Therefore only the abscissas of the characteristic 
points have to be calculated. 
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SURE-LS applies an α-cut based approach for this task. It uses a set of α-levels 
compiled together by taking into consideration the break-point levels of all 
antecedent dimensions and the current consequent partition. The calculations are 
done separately for the left and right flanks. On each side for each level it 
calculates the weighted average of the distances between the endpoints of the α-
cuts of the rule antecedent and the observation set. The weighting makes 
possible to take into consideration the different antecedent dimensions (input 
state variables) with different influence. 

Figure 4. The shape of the conclusion calculated by SURE-LS 

The basic idea of the method is slightly similar to the concept of SURE-p, 
namely the conservation of the weighted average differences measured on the 
antecedent side. Here the differences are measured in horizontal direction and 
the revision results in an intermediate set or an array of points. The conclusion 
with the desired shape type is calculated from these applying the method of 
Least Squares (fig. 4).  

Due to the last step of the calculation the resulting set is always a valid one and 
it conserves the piece-wise linearity. Similar to the previous method if the rule 
antecedent fits the observation perfectly the conclusion will be identical with the 
consequent of the rule. The method is developed for systems with a 
multidimensional antecedent universe. It does not met the shape invariance 
criteria because it is applicable only in the case when all the linguistic terms of 
the partition can be described by a single shape type. The main advantage of the 
method is its low computational complexity. It fulfils the conditions 1, 2, 3.a, 4 
and 5. 

5. REVE 

In [7] Klawonn introduced a new approach to handle uncertainty or imprecision 
concentrating on the idea of indistinguishability of values whose difference is 
small. The new concept was called Vague Environment (VE) and it was 

µ 

y 

1 B* 



Johanyák, Zs. Cs. – Kovács, Sz.: Survey on three single rule reasoning methods 

 7 

enhanced and applied for the development of a fuzzy rule interpolation 
technique working with singleton type observations (FIVE) by Kovács in [8]. 
Later the method was extended to the case of fuzzy input values ([9]) as well. 

REVE (Revision mEthod based on the Vague Environment) is a novel single 
rule reasoning method developed by the authors of this paper. It is also based on 
the concept Vague Environment and it is suggested as a complementary of the 
fuzzy set interpolation method VESI [6]. However, it can be also applied as 
single rule reasoning technique in case of any two-step fuzzy rule interpolation 
method that follows the concepts of GM [1]. 
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Figure 5. One dimensional antecedent universe of discourse, observation  

( *
1A - bold line), interpolated antecedent set ( iA1 ) and the corresponding scaling 

functions 

The main idea of REVE is the conservation of the scaling function ratio in single 
rule reasoning. Having VEs (and hence scaling functions) on both the rule 
antecedent and the consequent sides, the scaling function ratio between the rule 
antecedent and the observation should be equal to the scaling function ratio 
between the rule consequent and the demanded conclusion. In other words, the 
similarity of fuzzy sets is expressed in the form of the similarities of the 
corresponding VEs, in their scaling function ratio. For multidimensional 
antecedent universes, the basic “scaling function ratio” idea could be simply 
extended to “mean scaling function ratio” too. 

The main steps of the proposed REVE method are introduced in the followings. 
In the first step of the proposed method all input and output partitions are 
normalized to the unit interval. Next REVE calculates for each input dimension 

the ratio of the scaling function describing the VE of the observation ( ( )xs *a
i , 

see fig. 5) and the scaling function of the antecedent partition ( ( )xsa
i ) 
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where i is the number of the current antecedent dimension. Hereupon the 
harmonic mean of the antecedent ratios is calculated 
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where na is the number of antecedent dimensions. The rest of the calculations are 
done separately for each consequent dimension. Further on the case of the j

th 
output dimension is considered. 
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Figure 6. One dimensional consequent universe, interpolated consequent set 

( i
1B ), conclusion ( *

1B -bold line), and the corresponding scaling functions 

The basic idea of REVE is the principle of the conservation of the mean scaling 
function ratio. Thus the scaling function inducing the Vague Environment of the 
conclusion is determined by considering the same ratio between the scaling 
functions of the conclusion and the consequent partition as the mean scaling 
function ratio calculated on the antecedent side 

( ) ( )
( )
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xmrxr

c
j

*c
jac

j == , (5) 

where ( )xs
c

j  is the scaling function in the jth consequent dimension, and ( )xs
c

j

*  

is the scaling function describing the conclusion in the jth dimension (see fig. 6). 
The scaling function of the conclusion results from the formula (5) as follows 
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( ) ( ) ( )xmrxsxs ac
j
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Figure 5 and 6 illustrates a simple numerical example using a SISO (Single Input 
Single Output) system and applying on the consequent side the same ratio equal 
to 0.5 that was measured on the antecedent side. 

REVE has low computational complexity and its effectiveness increases with the 
number of consequent dimensions. It is due to the fact that the calculations on 
the antecedent side have to be done only once and the conclusion sets are 
determined separately in each consequent dimension. Thus several steps can 
made parallel if the computing environment it enables. The computational needs 
can be reduced further when the method is applied together with VESI by using 
the same pregenerated antecedent and consequent VEs.  

The application of the harmonic mean ensures that the conclusion will be crisp 

( ( ) ∞=xs *c
j ) if and only if all observation sets are crisp ( ( ) ixs *a

i ∀∞= ). The 

condition on compatibility with the rule base is also fulfilled (if the scaling 
functions of the observation and the rule antecedent are the same in all 
dimensions the conclusion will be equal to the rule consequent). Due to the ratio 
based conservation principle the changing direction of the fuzziness of the 
conclusion follows the changing direction of the fuzziness of the observation. 
Owing to these two features is condition 3.a fulfilled. 

Another advantage of the proposed REVE method is the lack of verification and 
correction steps required in many other methods for gaining convex valid fuzzy 
conclusion, hence the conclusion of REVE is always a convex valid fuzzy set. 

The above mentioned benefits are the pledge of the real-time applicability of the 
proposed VESI-REVE method pair, as in real-time systems the quick response 
(the speed of inference) is an essential requirement 

The main disadvantage of the proposed method is the lack of compatibility with 
the rule base in case, when only an approximate scaling function can be 
determined in any of the antecedent or consequent partitions. In addition the 
piece-wise linearity is also not always conserved. Hence the method fulfils the 
conditions 1, 3.a, 5 and 6 only. 

6. Conclusions 

Fuzzy Rule Interpolation based inference techniques ensure an acceptable output 
for fuzzy systems applying either full covering (dense), or sparse rule bases. A 
significant group of these techniques follows the two-step approach by 
interpolating first a new rule in the position of the observation and then 
calculating the conclusion by revising the rule consequent sets. 
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Table 1. Feature matrix of single rule reasoning methods 

 1 2 3.a 4 5 6 

SURE-p � � �  � � 

SURE-LS � � � � �  

REVE �  �  � � 

This paper surveyed and evaluated three SRR methods, the last of them being a 
newly introduced one. The results of the evaluation are summarized in table 1. 
None of the presented techniques fulfilled all the criteria, but all of them had 
their advantages that justify their application for the solution of one or more 
problem types. The evaluation facilitates the selection of the proper method as 
well. 
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Három egyszabályos következtetési módszer áttekintése 

Johanyák Zsolt Csaba - Kovács Szilveszter 

Összefoglalás 

Az egyszabályos következtetési módszerek célja a következmény meghatározása 
a megfigyelés és a köztes (interpolált) szabály ismeretében. Alkalmazásukra 
olyan fuzzy rendszereknél kerül sor, amelyek a fuzzy szabályinterpoláció 
általános módszertanát [1] követik. 

Cikkünkben három egyszabályos következtetési eljárással foglalkozunk. Ezek a 
SURE-p [2], a SURE-LS [4] és a REVE. Egy értékelési és összehasonlítási 
követelményrendszer felállítását követően röviden ismertetjük a korábban már 
publikált első két módszert kiemelve az értékeléshez és összehasonlításhoz 
szükséges fő lépéseket és lényeges tulajdonságokat. Ezután bemutatjuk a REVE 
eljárást, ami egy a bizonytalan környezet [7][8] fogalmára épülő új módszer. Az 
eljárás menetét részletesen ismertetjük. 

Untersuchung von drei Einzelregel-basierten 
Inferenzmethoden 

Johanyák, Zsolt Csaba – Kovács, Szilveszter 

Zusammenfassung 

Einzelregel-basierten Inferenzmethoden sind entwickelt für die Rechnung der 
Folge ausgehend von der Beobachtung und der interpolierten Regel. Sie sind 
benutzt bei solchen Fuzzy Systemen, die der Generalisierten Methodik für Fuzzy 
Regel-Interpolation [1] folgen. 

Dieser Artikel untersucht die Einzelregel-basierte Inferenzmethoden SURE-p 
[2], SURE-LS [4] und REVE. Nach der Zusammenstellung einem 
Erforderungssystem für Bewertung und Vergleich werden die ersten zwei 
Methoden, die schon früher publiziert wurden, kurz präsentiert. Die wichtigste 
Schritte und wesentliche Eigenschaften, die für Bewertung und Vergleich 
notwendig sind, werden hervorgehoben. Danach wird ein neues Verfahren 
eingeführt, das auf dem Konzept Vage Umgebung [7][8] basiert ist. Die 
Methode REVE wird ausführlich dargelegt. 


