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Abstract: The aim of this paper is to introduce a novel two-step Fuzzy Rule Interpolation 

Technique (FRIT) “VEIN”, based on the concept of Vague Environment. The strength of 

FRIT against classical fuzzy reasoning methods is the ability of gaining conclusion even in 

case where the knowledge is represented by sparse fuzzy rule bases. The FRIT “VEIN” 

introduced in this paper is following the structure the Generalized Methodology of fuzzy 

rule interpolation [1], by adapting the concept of Vague Environment [4] for approximate 

description of fuzzy partitions [6]. 
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1 Introduction 

The conventional fuzzy rule based systems applying either the Zadeh-Mamdani-

Larsen [14][9][8] concept or the Takagi-Sugeno [13] approach require the dense 

character of the rule base. Having a sparse rule base they cannot fire any of the 

rules for some observations, which do not overlap any of the rule antecedents at 

least partially. In such cases the fuzzy system based on them cannot produce an 

acceptable output. The problem can be solved by the application of Fuzzy Rule 

Interpolation Techniques (FRITs). 

Since 1991 numerous FRITs have been proposed. They can be divided into two 

main groups. The first group produces the approximated conclusion from the 

observation directly; therefore its members are called one-step methods. The 

members of the second group reach the target in two steps. In the first step they 

interpolate a new rule whose antecedent part overlaps the observation at least 

partially. Then in the second reasoning step the estimated conclusion is 

determined by a Single Rule Reasoning (revision) method based on the similarity 

of the observation and the antecedent part of the newly interpolated rule. The main 

structure of the “two-step” methods are summarised in the “Generalized 

Methodology (GM) of fuzzy rule interpolation” introduced in [1] by Baranyi et al.  
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In this paper the authors propose a novel two-step FRIT called VEIN, based on the 

concept of Vague Environment. This concept, originally introduced by Klawonn 

in [4], is based on the similarity or indistinguishability of elements in a universe. 

Two values in a Vague Environment are ε-distinguishable if their distance is 

greater than ε, where the distances are weighted distances. The weighting factor or 

function is called scaling function (factor) [4]. Hence the Vague Environment can 

be characterized by its scaling function. There are ways for finding relation 

between the Vague Environment and fuzzy partitions see e.g. in [4], [6]. Therefore 

the concept of Vague Environment can be also applied for fuzzy reasoning, even 

for FRIT too. E.g. a one-step FRIT method (later named as “FIVE”) is introduced 

in [6]. 

2 Vague environment based two-step fuzzy rule 
interpolation method 

The Vague Environment based two-step fuzzy rule INterpolation (VEIN) method 

essentially follows the concepts laid down by the Generalized Methodology (GM) 

of fuzzy rule interpolation [1]. It calculates the conclusion in two steps. It 

1. interpolates a new rule in the position of the observation, 

2. determines the conclusion by firing the new rule. 

For the facilitation and simplification of the calculations all input and output 

partitions are normalized to the unit interval. The position of the linguistic terms is 

defined by its reference points. We use the centre of the core for this task. The 

distance between the sets is expressed by the mean of the Euclidean distance of 

their reference points. 

In the first step the new rule is determined in three stages. These are the 

followings. 

a. The shape of the antecedent sets is determined using a set interpolation 

method called VESI, which is based on the concept Vague Environment and 

presented more details in section 3. 

b. The position of the consequent sets is calculated by a crisp interpolation 

technique presented in section 4. 

c. The shape of the consequent sets is calculated using the same set interpolation 

technique as in stage a. 

The final conclusion is determined in the second step of VEIN applying a special 

single rule reasoning method called REVE that is also based on the concept Vague 

Environment. Section 5 introduces REVE in details. 



3 VESI 

The method VESI (Vague Environment based Set Interpolation) aims the 

determination of a new linguistic term in a specific point, called interpolation 

point, of a fuzzy partition. It can be applied for the determination of the antecedent 

and consequent sets of the new rule in the first step of any FRI technique, which 

follows the concepts of the GM [1]. The method is the same regardless of it is 

used in case of a rule premise or a rule consequent. It can be applied in both the 

cases of sparse and dense partitions. 

Similar to the other set or rule interpolation/extrapolation/approximation 

techniques VESI assumes regularity between the linguistic terms of a fuzzy 

partition. The first step of the technique is the generation of the VE of the 

partition, which has to be done only once, before starting the fuzzy system based 

on it. Throughout the course of the repetitive reasoning steps the original VE is 

used in the calculations. 
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Figure 1  

Sparse partition with two trapezoid shaped linguistic terms 

The second step of VESI starts with a given interpolation point in the current 

dimension (partition), which is actually a reference point of a fuzzy set. The basic 

idea is that the new set conserves the properties of the VE. Let the prototypical 

point (where the membership value of the requested fuzzy set is equal to 1) be 

considered to be the interpolation point. Starting from it one can generate the 

shape of the new linguistic term easily from the scaling function. 

Further on the algorithm is presented by a numerical example. For simplicity and 

lucidity the sample partition (fig. 1 ) is sparse and it contains two trapezoid shaped 

CNF sets only. The sample linguistic terms are defined as follows 

{ }0/40.0,1/30.0,1/20.0,0/00.011 =A , (1) 

{ }0/00.1,1/90.0,1/80.0,0/70.012 =A , (2) 



where the first subscript of the sets denotes the ordinal number of the input 

dimension and the second subscript indicates the ordinal number of the set in the 

current partition (dimension). The reference points of the sets are defined by the 

mid points of the cores ( ( ) 25.011 =ARP  and ( ) 85.012 =ARP ). In this example for 

the sake of simplicity the right flank of the set A11 and the left flank of the set A12 

have the same slope in absolute value. The range of the partition is [ ]1,0
1

=AR . 

The scaling function builds up from the scaling factors (3)-(8) according to the 

membership shape of the element fuzzy sets 
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where 
Z

Xs  is the scaling factor corresponding to the Z (left flank, right flank or 

core) part of the shape of the fuzzy set X (A11 or A12). 

To be conform to the extended concept of the VE [5][7] each interval of the 

scaling function delimited by prototypical points – including here also the sparse 

portions of the partition – is defined only by the neighboring flanks of the sets. 

Thus the interval [0.40, 0.70) is characterized by the same scaling factor s=10 as 

its surrounding intervals [0.30, 0.40) and [0.70, 0.80). In a similar way in case of 

the leading and trailing empty (sparse) portions of the partition the scaling factors 

of the closest set flanks are used for the generation of the VE. This feature ensures 

the capability of interpolation and extrapolation for the VE. Figure 2 presents the 

scaling function of the partition presented in fig. 1. 

Let we suppose that the interpolation point is given by the abscissa 0.50 and we 

intend to generate a normal ( ( ) 11 =i
Aheight ) fuzzy set. The reference point of the 

new linguistic term will be identical with this point ( ) 50.01 =i
ARP . Thus the 



membership value of this point is ( )( ) 11
1

=i

A
ARPiµ . The shape of the new set is 

calculated by integrating the scaling function. The left and right flanks are 

calculated separately. The left flank is determined point-wise starting from the 

reference point and proceeding towards 0 (the lower endpoint of the range of the 

linguistic variable) by applying the formula 
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Figure 2  

Vague Environment of the partition 

The right flank is determined in a similar way only the endpoints of the interval 

and the direction are changed 
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Figure 3  

The resulting partition after the interpolation 

In this case one is proceeding towards 1 (the upper endpoint of the range of the 

linguistic variable). By both sides the points are calculated using a loop construct. 



The termination condition is either the zero membership value of the current point 

or the reaching of an endpoint of the range of the linguistic variable. 

In our example the resulting set is triangle shaped with the characteristic points 

situated at {0.40, 0.50, 0.60}. The partition containing the interpolated linguistic 

term is presented on figure 3 . 

VESI fulfils most of the requirements defined in [3] as General conditions on FRI 

techniques. Some relevant features are listed below: 

• The new set never can be an abnormal one due to the nature of the VE and to 

the algorithm that calculates the two flanks separately and joins them in the 

prototypical point. 

• VESI preserves the “in between” feature because the reference point of the 

new set is identical with the point of the interpolation. 

• The condition “compatibility with the rule base” is only fulfilled when the 

neighboring flanks have the same slope in absolute value. 

• The fuzziness of the result depends on the shape of the neighboring flanks of 

the surrounding sets only in the simplest case (see figures 1 and 3 ). Having 

an interpolation point in the closest neighborhood of the reference point of a 

linguistic term the other flank of the sets also exercises influence on the 

calculations. Therefore the shape of the obtained set can contain some break-

points. 

• As a consequence of the above described feature VESI not always conserves 

the piece-wise linearity of the surrounding sets. 

• FRI methods based on the proposed VESI can be easily extended to handle 

multidimensional antecedent universes as well. 

4 Position of the consequent sets 

The position of each consequent set of the new rule is identical with the reference 

point of the final conclusion in the respective dimension. They are calculated 

independently in the same manner each output dimension. Henceforth in the 

notations of the equations only the k
th

 dimension will be presented. 

The basic assumption of the calculation is that each rule can be viewed as a point 

on a hyper-surface. The co-ordinates of this point are the reference points of the 

linguistic terms of the rule antecedent ( ( )
jmARP ) and the reference point of the 

rule consequent ( ( )
kmBRP ). 



Thus the problem of finding the position of the consequent set of the interpolated 

rule can be reduced to a crisp na dimensional interpolation of irregularly spaced 

data, where na is the number of antecedent dimensions. Due to its easy 

applicability we use the extended version of the Shepard interpolation [11] for this 

task [2]. 

It calculates the demanded abscissa as a weighted average of the reference points 

of the consequent sets that belong to the known rules 
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∑

∑
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⋅
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m

m
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1
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where ( )i

kBRP  is the reference point of the consequent set of the interpolated rule 

in the k
th

 output dimension, N is the number of the rules, Bkm is the consequent 

linguistic term of the m
th

 rule in the k
th

 dimension and wm is the weight attached to 

the m
th

 rule. 

The weighting is distance dependent. The position of each rule antecedent and 

also the position of the observation in the antecedent hyper-space can be 

characterized by points defined by the RPs of the linguistic terms used as co-

ordinates. The applied weighting factor uses the Euclidean distances between 

these points 
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where RAm is the antecedent of the m
th

 rule, A* is the observation, Ajm is the 

antecedent linguistic term of the m
th

 rule in the j
th

 input dimension, 
*

jA  is the 

observation in the j
th

 dimension. 

5 REVE 

The conclusion is calculated in the second step of the method by firing the 

interpolated rule. The antecedent part of the new rule does not fit always perfectly 

the observation. Therefore a revision based single rule reasoning method is 

applied, which calculates the conclusion by modifying the consequent sets of the 

new rule. This modification is related to the differences between the rule 

antecedent sets and the observation sets. 

REVE (Revision mEthod based on the Vague Environment) is a novel single rule 

reasoning method and is also based on the concept Vague Environment. It is 



suggested as a complementary of the fuzzy set interpolation method VESI. 

However, it can be also applied as single rule reasoning technique in case of any 

two-step fuzzy rule interpolation method that follows the concepts of GM [1]. 
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Figure 4  

One dimensional antecedent universe of discourse, observation ( *A - bold line), interpolated 

antecedent set ( iA ) and the corresponding scaling functions 

The main idea of REVE is the conservation of the scaling function ratio in single 

rule reasoning. Having Vague Environments (and hence scaling functions) on both 

the rule antecedent and consequent sides, the scaling function ratio between the 

rule observation and the antecedent should be equal to the scaling function ratio 

between the demanded conclusion and the rule consequent. In other words, the 

similarity of fuzzy sets is expressed in the form of the similarities of the 

corresponding Vague Environments, in their scaling function ratio. For 

multidimensional antecedent universes, the basic “scaling function ratio” idea 

could be simply extended to “mean scaling function ratio” as well. 

REVE first calculates for each input dimension the ratio of the scaling function 

describing the Vague Environment of the observation ( ( )xs
jA*

, see fig. 4 ) and the 

scaling function of the antecedent partition ( ( )xs
jA

) 

( )
( )

( )xs

xs
xr

j

j

j

A

A

A

*

= , (13) 

where j is the number of the current antecedent dimension. Further on for a simple 

demonstration of the calculations we consider a SISO (Single Input Single Output) 

fuzzy system, which is defined as follows. Its antecedent universe is described by 

(1) and (2) (see fig. 1 ). The consequent universe is given by (14) and (15) (see fig. 

5 ). The rule base contains two rules: 
1111 BA →  and 

1212 BA → . The observation is 

triangle shaped and is defined by (16) (see fig. 4). The reference point of the 



conclusion ( ( ) 4027.01 =
∗

BRP ) was calculated by the extended version of the 

Shepard interpolation.  

{ }0/25.0,1/20.0,0/15.011 =B  (14) 

{ }0/85.0,1/80.0,0/75.012 =B  (15) 

{ }0/70.0,0/50.0,0/30.0*

1 =A  (16) 

Thus the ratio of the scaling functions is 
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Next the harmonic mean of the antecedent ratios is calculated 
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1

1

, (18) 

where na is the number of antecedent dimensions. In our example ( ) ( )xrxmr AA 1
= . 

The rest of the calculations are done separately for each consequent dimension. 

Further on the case of the k
th

 output dimension is considered. In the example k=1. 
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Figure 5  

One dimensional consequent universe, interpolated consequent set (
iB1 ), conclusion (

*

1B -bold line), 

and the corresponding scaling functions 

The basic idea of REVE is the principle of the conservation of the mean scaling 

function ratio. Thus the scaling function inducing the Vague Environment of the 

conclusion is determined by considering the same ratio between the scaling 

functions of the conclusion and the consequent partition as the mean scaling 

function ratio calculated on the antecedent side 



( ) ( )
( )

( )xs
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where ( )xs
kB

 is the scaling function of the k
th

 consequent dimension, and ( )xs
kB
*

 is 

the scaling function describing the conclusion in the k
th

 dimension (see fig. 5 ). 

The scaling function of the conclusion results from the formula (19) as follows 

( ) ( ) ( )xmrxsxs ABB kk

⋅=*
. (20) 

Thus the example application leads to the function (21), as it is demonstrated in 

figure 5 .  
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The right side of fig. 5 presents the scaling function of the conclusion calculated 

for the whole range [0, 1]. This is done for illustration purposes, in practical 

applications it has to be calculated only for that portion of the universe of 

discourse, which is necessary for the determination of the shape. The membership 

function is calculated similar to the example presented in the section describing 

VESI (see. (9) and (10)). It is triangle shaped with characteristic points at {0.3027, 

0.4027, 0.5027}. 

The method REVE has low computational complexity and its effectiveness 

increases with the number of consequent dimensions. It is due to the fact that the 

calculations on the antecedent side have to be done only once and the conclusion 

sets are determined separately in each consequent dimension. Thus several steps 

can made parallel if the computing environment it enables. The computational 

needs can be reduced further when the method is applied together with VESI by 

using the same pregenerated antecedent and consequent Vague Environments.  

The adaptation of the harmonic mean ensures that the conclusion will be crisp 

( ( ) ∞=xs
kB
*

) if and only if all observation sets are crisp ( ( ) jxs
jA

∀∞=*
). The 

condition on compatibility with the rule base introduced in [3] is also fulfilled (if 

the scaling functions of the observation and the rule antecedent are the same in all 

dimensions the conclusion will be equal to the rule consequent). Due to the ratio 

based conservation principle, the direction of the fuzziness changing of the 

conclusion follows the direction of the fuzziness changing of the observation. 

Owing to these two features the less uncertain the observation is the less fuzziness 

will have the approximated conclusion. 

Another advantage of the proposed REVE method is the lack of verification and 

correction steps required in many other methods for gaining valid, convex and 



normal fuzzy conclusion, hence from the method it is straightforward, that the 

conclusion of REVE is always a valid convex and normal fuzzy set. 

The main disadvantage of REVE is the lack of compatibility with the rule base in 

case, when only an approximate scaling function can be determined in any of the 

antecedent or consequent partitions. In addition the piece-wise linearity is also not 

always conserved. 

Conclusions 

FRITs offer a suitable solution for handling fuzzy systems where the knowledge is 

represented by a sparse fuzzy rule base. This paper introduced a novel two-step 

FRIT called VEIN, based on the concept of Vague Environment.  As an additional 

benefit of the proposed method, VEIN fulfils most of the FRIT conditions 

suggested in [3]. 

The main advantage of the proposed method is its quick inference process, which 

ensures the real-time applicability as well. As a main drawback, the lack of 

compatibility with the rule base in case of some membership function types when 

approximate scaling functions are required should be also mentioned. This topic is 

subject of further research work. 
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