
A GAMF Közleményei, Kecskemét, XXII. évfolyam (2008)

1

Analyzing students’ programming failures

Dr. Johanyák, Zsolt Csaba1 −−−− Pap-Szigeti, Róbert2 −−−− dr.
Alvarez Gil, Rafael Pedro3

This paper reports the results of a research done at Kecskemét College to
examine information engineering students’ typical programming failures. A
questionnaire-based measurement was organized for this purpose. The
expectations regarding the positive influence of the visual methods were not
fulfilled. The utilization of the student feedback in order to help the students in
better understanding of the thought material as well as in the development of
their self-concept is considered extremely important. The results confirm that the
level of practicing and understanding is very important in successful teaching.

1. Introduction
Software engineering is a special discipline that is similar to other engineering
disciplines in many aspects, but basically defines different tasks [2]. Although in
the last decades several software development methodologies and approaches
have been published one can often read or hear from software project failures
(schedule slips, buggy releases, missing features, system crashes, etc.).

Programming is a complex and difficult task. The customer usually does not
know exactly at the beginning what she/he wants and later she/he continuously
changes her/his requirement. Thus software engineers should possess solid
methodological grounds as well as strong knowledge of programming languages
and development tools. Teaching software engineering has a vital role in the
acquirement of these skills.

We teach software engineering for information engineering students at
Kecskemét College. Although programming is not the primary topic in their
curriculum many of them will be hired as a software developer. Thus the
effectiveness of the software development teaching is especially important. As

1 PhD, associate professor, Kalmár Sándor Institute of Information Technology,

Kecskemét College
2 Senior lecturer, Kalmár Sándor Institute of Information Technology, Kecskemét

College
3 PhD, associate professor, Kalmár Sándor Institute of Information Technology,

Kecskemét College

Johanyák, Zs. Cs., Pap-Szigeti, R. and Alvarez Gil, R. P.: Analyzing students’ programming failure, A
GAMF Közleményei, Kecskemét, XXII. (2008), ISSN 0230-6182, pp. 115-120.
http://johanyak.hu

Johanyák et al: Analyzing students’ programming failures

 2

part of our continuous curriculum development and improvement process we
examine periodically [1] the typical programming failures of our students.

This paper reports the results of a research targeting three main topics. The first
one covered the occurrence frequency of some typical programming failures by
students who have not enrolled yet on the visual programming course. The
second topic we was interested in was whether the skills and knowledge
acquired in course of the visual programming and RAD (Rapid Application
Development) training had a positive influence regarding the failures. Finally we
examined the typicality of the students’ failures experienced by us during the
laboratories.

The rest of this paper is organized as follows. Section 2 presents briefly our
software engineering education. Section 3 demonstrates a questionnaire-based
experiment about students’ programming failures.

2. Software engineering teaching at Kecskemét College
The IT students of Kecskemét College attain the basic programming skills in
three semesters. In course of the Problem Classes, Algorithms course unit placed
in the first semester, they go deeply into the concepts of algorithms and they get
acquainted with the related description methods. The basics of C programming
language are taught during the second semester. This unit is called Programming
I. In the next semester comes the Programming II. course unit that continues the
training of the C language extended with non object-oriented elements of C++.
Relevant topics are data structures, file input-output operations, functions,
dynamic memory management, etc. The students have to take an exam at the end
of the course. The Programming Paradigms and Techniques unit comes in the
next semester. Its syllabus comprehends the basics of Object-Oriented
Programming (OOP) using the C++ programming language. It should be
mentioned that the students are trained in database management parallel with the
programming courses in the second and third semesters.

The Programming Paradigms and Techniques unit is followed by the
compulsory Visual Programming class. The students get acquainted in its frames
with the visual application development through the use of a high level
development tool (Visual Studio 2008 Professional), which supports RAD
techniques. They also learn a new object-oriented language called C#. In parallel
with the Visual Programming appears the course Software Engineering. This is
the first time when students familiarize themselves with the different models and
methodologies, CASE tools, as well as concepts and construction practice of
UML diagrams.

Johanyák et al: Analyzing students’ programming failures

 3

3. Empirical results

3.1. Sample and measuring devices

We organized a questionnaire-based measurement for analyzing our students’
programming failures. The sample (target respondents) of our examination
consisted of 126 students, who were chosen from students enrolled in the course
units Visual Programming and Software Engineering. 49 of them have begun to
learn C# language at the beginning of the semester. The measurement was done
at the end of the semester. Approximately one third of the sample contained
students who failed their Programming II. exams at their first course enrollment.

In order to examine the characteristic programming failures we prepared a
questionnaire applying scaled questions (Likert [7]) with ten degrees. The first
18 sentences of the questionnaire asked about the frequency of failures that can
be bound equally to the C/C++ and C# languages. Another 14 questions
concerned the failures related to C/C++ language only. The last third of the
failures dealing with failures typical of the C# language contained 8 items. The
reliability of the first two parts (filled in by all students) was acceptably high,
α = 0.89. The indicator of the reliability was also calculated for the whole
questionnaire (α = 0.89), although it was filled in by only 49 students.

The rest of the questionnaire studied the background data and some components
of programming self-concept. We evaluated the self-concept based on a scale
with seven Likert-styled questions. Some sentences with negative meaning were
also included in the questions. In those cases the scale of the answers was
reversed. Despite the low number of items the scale proved to be reliable
(α = 0.85); the variables settled into a single factor (KMO = 0.85; Bartlett-test:
χ2 = 354.95; p < 0.001). The created factor with % point scale converged to the
normal distribution well.

3.2. Failures typical of both C/C++ and C# languages

The mean and the standard deviation was assessed on the scale of the answer
(value 1 meant that the student never makes the failure; the answer was value 10
when the student makes the mistake always). The lowest means (1.78) appeared
in the case of basic syntax errors (for example “I write mark ‘<>’ in place of
mark ‘!=’.”). Failures related to complex programs (for example “I do not know
what a DLL is and how I can generate and use it.”) have the highest mean values
(6.00).

We factorized the variables of the first two sub-questionnaires (part I.:
KMO = 0.732; Bartlett-test: χ2 = 614.03; p < 0.001; part II.: KMO = 0.759;
χ2 = 512.08; p < 0.001). The resulting factors are presented in Table 1.

Johanyák et al: Analyzing students’ programming failures

 4

Table 1. Failure factors for both languages

ID of question Name of the factor Mean
1., 2., 13., 14. Basic syntax errors 2.3
3., 4. Bracket failures 2.0
5., 6., 7., 11., 12., 16.,
17., 18.

Problems of complex types and programs 4.3

22., 23., 24., 25., 27. Character and string problems 3.2
19., 20., 21., 26., 28. Structure and pointer failures 4.2
30., 31., 32. Header file problems 4.5

None of these factors showed significant difference between the two student
groups (C#-learners and others). However, one can find lower values by those
students, who took the Programming II. by the first attempt. The difference is
significant in the case of complex variable types (x1 = 3.97; x2 = 4.85; F = 0.51;
p = 0.48; t = 2.33; p = 0.02) and in the case of programs splitted into more files
(x1 = 4.08; x2 = 4.79; F = 0.84; p = 0.36; t = 2.19; p = 0.03). It indicates
presumably that many students should have much more practice at experimental
level to reach higher abstraction levels [3] [4].

3.3. Problems typical of the C# language

As we mentioned before this part of the questionnaire was filled in by only 49
students. The answers were not arranged into well-separable factors
(KMO = 0.54). It is worthy to compare the contexts of truth with the factors
presented early for the problems appearing in a contact with this language. We
calculated the regressions using C#-concerned problems as dependent variables
and factors presented early as independent variables. These show that the factors
can explain from one seventh to a quarter of the variance of C#-concerned
failures (between 12.85% and 29.5%). Therefore it was worthy the independent
examination of these failures.

3.4. Motives of our students

The academic achievement can be significantly different among students having
similar family backgrounds, intelligence and pre-knowledge. Both the teachers’
experiences and the pedagogic research confirm that the motives play a
considerable role in the learning performance beside the cognitive components
of the psyche [5] [6].

The attitudes for programming were measured in a Likert-styled sub-
questionnaire with five degrees. We found a significant difference between the
two student groups regarding this component. Surprisingly, the attitude of C#-

Johanyák et al: Analyzing students’ programming failures

 5

learners is significantly lower than other students’ attitude (x1 = 2.45; x2 = 3.03;
F = 0.11; p = 0.74; t = 2.72; p = 0.01). We cannot explain this difference by
other variables, because they do not separate by parents’ qualifications
(F = 0.12; p = 0.73; t = 1.65; p = 0.10) and by number of unsuccessful exams in
Programming II. (χ2 = 1.25; p = 0.26). It is easy to understand that the attitude
of those who passed their Programming II. exam at the first attempt is
significantly higher than others’ (x1 = 3.07; x2 = 2.21; F = 4.57; p = 0.03;
d = 4.47; p < 0.001).

The mean of programming self-concept is 47.2 %p in the whole sample, which
shows that our students’ self-concept do not reach the medium level. The C#-
learners’ self-concept is significantly lower than the other students’ (x1 = 41.8;
x2 = 50.7; F = 6.70; p = 0.01; d = 2.34; p = 0.02).

4. Conclusions
As a result of the analysis we got a clearer view of the occurrence frequency of
some programming failures considered as typical, which helps us emphasizing
certain parts of the thought material.

Surprisingly our expectations regarding the positive influence of the visual
methods were not fulfilled. The poor results are understandable at the beginning
of studying a new programming language and technique. However, in the long
run the lower self-concept can have a negative reaction to the academic
achievement. Therefore we consider extremely important to improve the
utilization of the student feedback in order to help the students in better
understanding the thought material as well as in the development of their self-
concept.

Our results confirm that the level of practicing and understanding is very
important in successful teaching. Progressing without them can cause loss of
motivation and decrease of interest in programming, which could turn into the
obstacle of the further successful learning.

REFERENCES

[1] Johanyák, Zs. Cs., Tóth, Gy. F.: Vizuális módszerek oktatásának hatása a
hallgatók programozási hibáira, Matematika-, fizika- és számítástechnika
oktatók XXXI. konferenciája, Dunaújváros, 2007. augusztus 23-25., pp.
126-131.

[2] Pollice, G.: Teaching software development vs. software engineering,
http://www.ibm.com/developerworks/rational/library/dec05/pollice/index.
html, 2005.

Johanyák et al: Analyzing students’ programming failures

 6

[3] Piaget, J.: Az értelem pszichológiája. Gondolat Kiadó, Budapest, 1993.

[4] Nagy, J.: XXI. század és nevelés. Osiris Kiadó, Budapest, 2000.

[5] Józsa, K.: Az elsajátítási motiváció és a kognitív kompetencia fejlesztése.
In: Csapó Benı és Vidákovich Tibor (ed.): Neveléstudomány az
ezredfordulón. Nemzeti Tankönyvkiadó, Budapest, 2001. pp. 162-174.

[6] Csapó, B.: A képességek fejlıdése és iskolai fejlesztése. Akadémiai Kiadó,
Budapest, 2003.

[7] Likert, R.: A Technique for the Measurement of Attitudes, NY: Archives
of Psychology, 140, 1932, pp. 44-53.

A hallgatók programozási hibáinak vizsgálata

Dr. Johanyák Zsolt Csaba −−−− Pap-Szigeti, Róbert, −−−− dr. Alvarez Gil,
Rafael Pedro

Összefoglaló

Dolgozatunkban a Kecskeméti Fıiskola mérnök informatikus hallgatóinak
jellegzetes programozási hibáit vizsgáló kutatásunk eredményeirıl számolunk
be. A felmérést hallgatók által kitöltött őrlapok segítségével végeztük. Az
eredmények igazolják, hogy a begyakorlottság és a megértés szintje fontos
szerepet játszik a sikeres oktatásban.

Analyse der Programmierungsfehlers der Studenten

Dr. Johanyák, Zsolt Csaba −−−− Pap-Szigeti, Róbert, −−−− dr. Alvarez Gil,
Rafael Pedro

Zusammenfassung

Dieser Beitrag meldet die Resultate einer Forschung, die an der Hochschule
Kecskemét erfolgt wurde, um typischen Programmierungsfehlers der
Informatikstudenten zu untersuchen. Eine Fragebogen-basierte Datenerhebung
wurde zu diesem Zweck organisiert. Die Erwartungen betreffend den positiven
Einfluss der Visuellen Entwicklungsmethoden wurden nicht erfüllt. Die
Ergebnisse bestätigen, dass das Niveau des Einübens und des Verständnisses im
erfolgreichen Unterricht sehr wichtig sind.

