Johanyak, Zs. Cs., Pap-Szigeti, R. and Alvarez Gil, R. P.; Analyzing students’ programming failure, A
GAMF Kozleményei, Kecskemét, XXII. (2008), ISSN 0230-6182, pp. 115-120.
http://johanyak.hu

A GAMF Kozlemeényei, Kecskemét, XXII. évfolyam (2008

Analyzing students’ programming failures

Dr. Johanyék, Zsolt Csabfa- Pap-Szigeti, Robeft-dr.
Alvarez Gil, Rafael Pedrb

This paper reports the results of a research donéeaskemét College to
examine information engineering students’ typicabgpamming failures. A

guestionnaire-based measurement was organized Hisr purpose. The

expectations regarding the positive influence @& thisual methods were not
fulfilled. The utilization of the student feedbaitkorder to help the students in
better understanding of the thought material ad a®lin the development of
their self-concept is considered extremely impdrt&he results confirm that the
level of practicing and understanding is very intgot in successful teaching.

1. Introduction

Software engineering is a special discipline tasiimilar to other engineering
disciplines in many aspects, but basically defoifferent tasks [2]. Although in
the last decades several software development ohatigies and approaches
have been published one can often read or hear $adtware project failures
(schedule slips, buggy releases, missing feataysgem crashes, etc.).

Programming is a complex and difficult task. Thestomer usually does not
know exactly at the beginning what she/he wantslatett she/he continuously
changes her/his requirement. Thus software enginekould possess solid
methodological grounds as well as strong knowlezfgerogramming languages
and development tools. Teaching software engingenes a vital role in the
acquirement of these skills.

We teach software engineering for information eaging students at
Kecskemét College. Although programming is not gmenary topic in their
curriculum many of them will be hired as a softwateveloper. Thus the
effectiveness of the software development teactsngspecially important. As

1 PhD, associate professor, Kalméar Sandor Institfitaformation Technology,
Kecskemét College

2 Senior lecturer, Kalmar Sandor Institute of Infatian Technology, Kecskemét
College

% PhD, associate professor, Kalmar Sandor Institfiteformation Technology,
Kecskemét College

Johanyak et al: Analyzing students’ programmintufais

part of our continuous curriculum development amgrovement process we
examine periodically [1] the typical programmingdees of our students.

This paper reports the results of a research iagyéiree main topics. The first
one covered the occurrence frequency of some tiyprogramming failures by
students who have not enrolled yet on the visuabgamming course. The
second topic we was interested in was whether #iks sand knowledge
acquired in course of the visual programming andDR@&Rapid Application
Development) training had a positive influence rdgay the failures. Finally we
examined the typicality of the students’ failuregerienced by us during the
laboratories.

The rest of this paper is organized as follows.tiBec2 presents briefly our
software engineering education. Section 3 demaestra questionnaire-based
experiment about students’ programming failures.

2. Software engineering teaching at Kecskemét Cogle

The IT students of Kecskemét College attain thacbpsogramming skills in
three semesters. In course of Breblem Classes, Algorithnt®urse unit placed
in the first semestethey go deeply into the concepts of algorithms ey get
acquainted with the related description method® B#sics of C programming
language are taught during the second semester Lifiltiis calledProgramming

I. In the next semester comes Br®gramming ll.course unit that continues the
training of the C language extended with non obpeEinted elements of C++.
Relevant topics are data structures, file inpupoutoperations, functions,
dynamic memory management, etc. The students baedi¢ an exam at the end
of the course. Th@rogramming Paradigms and Techniquest comes in the
next semester. Its syllabus comprehends the basicObject-Oriented
Programming (OOP) using the C++ programming langudg should be
mentioned that the students are trained in databas@agement parallel with the
programming courses in the second and third serseste

The Programming Paradigms and Techniquesit is followed by the
compulsoryisual Programminglass. The students get acquainted in its frames
with the visual application development through thee of a high level
development tool (Visual Studio 2008 Professionahich supports RAD
techniques. They also leaamew object-oriented language called C#. In palrall
with the Visual Programmingappears the coursoftware Engineeringlhis is

the first time when students familiarize themsehith the different models and
methodologies, CASE tools, as well as concepts amdstruction practice of
UML diagrams.

Johanyak et al: Analyzing students’ programmintufais

3. Empirical results

3.1. Sample and measuring devices

We organized a questionnaire-based measuremerantdyzing our students’
programming failures. The sample (target resporsleat our examination
consisted of 126 students, who were chosen frodests enrolled in the course
units Visual ProgrammingandSoftware Engineeringd9 of them have begun to
learn C# language at the beginning of the semeBter measurement was done
at the end of the semester. Approximately one tbfrdhe sample contained
students who failed theRrogramming ll.exams at their first course enrollment.

In order to examine the characteristic programnmiiaifures we prepared a
guestionnaire applying scaled questions (Liker} {¥th ten degrees. The first
18 sentences of the questionnaire asked aboutdbadncy of failures that can
be bound equally to the C/C++ and C# languages.th®mnol4 questions
concerned the failures related to C/C++ languadyg. orhe last third of the
failures dealing with failures typical of the C#htuage contained 8 items. The
reliability of the first two parts (filled in by Bktudents) was acceptably high,
a = 0.89. The indicator of the reliability was alsalculated for the whole
guestionnaireo = 0.89), although it was filled in by only 49 saunds.

The rest of the questionnaire studied the backgtalata and some components
of programming self-concept. We evaluated the aaifeept based on a scale
with seven Likert-styled questions. Some sentemgsnegative meaning were
also included in the questions. In those casesstiade of the answers was
reversed. Despite the low number of items the spatwed to be reliable
(o0 = 0.85); the variables settled into a single fa¢kdMO = 0.85; Bartlett-test:
X* = 354.95; p < 0.001). The created factor with %npsecale converged to the
normal distribution well.

3.2. Failures typical of both C/C++ and C# language

The mean and the standard deviation was assesstu: atale of the answer
(value 1 meant that the student never makes thedathe answer was value 10
when the student makes the mistake always). Thedbmeans (1.78) appeared
in the case of basic syntax errors (for examplevite mark ‘<>’ in place of
mark ‘1="."). Failures related to complex prograifisr example “I do not know
what a DLL is and how | can generate and useliaf)e the highest mean values
(6.00).

We factorized the variables of the first two sulespionnaires (part I.:
KMO = 0.732; Bartlett-testx® = 614.03; p < 0.001; part .. KMO = 0.759;
x*>=512.08; p < 0.001). The resulting factors aespnted in Table 1.

Johanyak et al: Analyzing students’ programmintufais

Table 1. Failure factors for both languages

ID of question Name of the factor Mean
1.,2.,13, 14, Basic syntax errors 2.3
3., 4. Bracket failures 2.0
51)7 6187" 11.,12..16., Problems of complex types and programs 4.3
22.,23., 24., 25., 27. Character and string proble 3.2
19., 20., 21., 26., 28. Structure and pointer fagu 4.2
30., 31., 32. Header file problems 45

None of these factors showed significant differebeéween the two student
groups (C#-learners and others). However, one icahléwer values by those
students, who took thBrogramming Il.by the first attempt. The difference is
significant in the case of complex variable types<3.97; % = 4.85; F = 0.51;
p =0.48;t =2.33; p = 0.02) and in the case ofyjmms splitted into more files
(x1 = 4.08; % = 4.79; F = 0.84; p = 0.36; t = 2.19; p = 0.03).indicates
presumably that many students should have much practice at experimental
level to reach higher abstraction levels [3] [4].

3.3. Problems typical of the C# language

As we mentioned before this part of the questiaenadas filled in by only 49
students. The answers were not arranged into wplsable factors
(KMO = 0.54). It is worthy to compare the contextfstruth with the factors
presented early for the problems appearing in @aconvith this language. We
calculated the regressions using C#-concerned gmabhs dependent variables
and factors presented early as independent vasiabiese show that the factors
can explain from one seventh to a quarter of théamee of C#-concerned
failures (between 12.85% and 29.5%). Thereforea$ worthy the independent
examination of these failures.

3.4. Motives of our students

The academic achievement can be significantly giffeamong students having
similar family backgrounds, intelligence and presWwtedge. Both the teachers’
experiences and the pedagogic research confirm ttieat motives play a
considerable role in the learning performance lge#ii@ cognitive components
of the psyche [5] [6].

The attitudes for programming were measured in &ertistyled sub-
guestionnaire with five degrees. We found a sigaiit difference between the
two student groups regarding this component. Ssirgly, the attitude of C#-

Johanyak et al: Analyzing students’ programmintufais

learners is significantly lower than other studeattude (% = 2.45; % = 3.03;

F =011, p = 0.74; t = 2.72; p = 0.01). We canaxplain this difference by
other variables, because they do not separate Ilpgngsa qualifications
(F=0.12; p=0.73; t = 1.65; p = 0.10) and by bemof unsuccessful exams in
Programming Il.(x> = 1.25; p = 0.26). It is easy to understand thatattitude
of those who passed theProgramming Il. exam at the first attempt is
significantly higher than others’ {x= 3.07; %x = 2.21; F = 4.57; p = 0.03;
d=4.47; p <0.001).

The mean of programming self-concept is 47.2 %thinwhole sample, which
shows that our students’ self-concept do not redaehmedium level. The C#-
learners’ self-concept is significantly lower théme other students’ (x= 41.8;
X, =50.7; F=6.70; p = 0.01; d = 2.34; p = 0.02).

4. Conclusions

As a result of the analysis we got a clearer viéthe occurrence frequency of
some programming failures considered as typicalchvhelps us emphasizing
certain parts of the thought material.

Surprisingly our expectations regarding the positinfluence of the visual

methods were not fulfilled. The poor results ardarstandable at the beginning
of studying a new programming language and teclaigiowever, in the long

run the lower self-concept can have a negativetimado the academic

achievement. Therefore we consider extremely ingmbrtto improve the

utilization of the student feedback in order tophehe students in better
understanding the thought material as well as endévelopment of their self-
concept.

Our results confirm that the level of practicingdannderstanding is very
important in successful teaching. Progressing witlthem can cause loss of
motivation and decrease of interest in programminigich could turn into the

obstacle of the further successful learning.

REFERENCES

[1] Johanyék, Zs. Cs., Toth, Gy. F.: Vizualis médszeldhtasanak hatasa a
hallgaték programozasi hibaira, Matematika-, fizika szamitastechnika
oktatok XXXI. konferencigja, Dunaujvaros, 2007. asgfus 23-25., pp.
126-131.

[2] Pollice, G.: Teaching software development vs.veaft engineering,
http://www.ibm.com/developerworks/rational/librasigc05/pollice/index.
html, 2005.

Johanyak et al: Analyzing students’ programmintufais

[3] Piaget, J.: Az értelem pszicholégidzondolat Kiadd, Budapest, 1993.
[4] Nagy, J.: XXI. szdzad és nevelés. Osiris Kiado,dpedt, 2000.
[5] Jbzsa, K.: Az elsajatitasi motivacio és a kogrkitimpetencia fejlesztése.

In: Csapd Bed és Vidakovich Tibor (ed.): Neveléstudomany az
ezredforduldn. Nemzeti Tankdnyvkiadd, Budapest12@p. 162-174.

[6] Csapo, B.: A képességek tajese és iskolai fejlesztése. Akadémiai Kiado,
Budapest, 2003.

[7] Likert, R.: A Technique for the Measurement of Aitties, NY: Archives
of Psychology, 140, 1932, pp. 44-53.

A hallgatok programozasi hibdinak vizsgéalata

Dr. Johanyak Zsolt Csaba- Pap-Szigeti, Robert-dr. Alvarez Gil,
Rafael Pedro

Osszefoglalo

Dolgozatunkban a KecskemétiéiBkola mérndk informatikus hallgatéinak
jellegzetes programozasi hibéit vizsgalé kutatdserddményetil szamolunk
be. A felmérést hallgatok altal kitoltotirlapok segitségével végeztik. Az
eredmények igazoljak, hogy a begyakorlottsag ésegéntés szintje fontos
szerepet jatszik a sikeres oktatasban.

Analyse der Programmierungsfehlers der Studenten

Dr. Johanyak, Zsolt Csaba Pap-Szigeti, Rébert-dr. Alvarez Gil,
Rafael Pedro

Zusammenfassung

Dieser Beitrag meldet die Resultate einer Forschaiwy an der Hochschule
Kecskemét erfolgt wurde, um typischen Programmigstehlers der
Informatikstudenten zu untersuchen. Eine Fragebbgsierte Datenerhebung
wurde zu diesem Zweck organisiert. Die Erwartungetreffend den positiven
Einfluss der Visuellen Entwicklungsmethoden wurdeicht erfillt. Die
Ergebnisse bestétigen, dass das Niveau des Einlbdrdes Verstandnisses im
erfolgreichen Unterricht sehr wichtig sind.

