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Abstract – Fuzzy modeling has great adaptability to the 

variations of system configuration and operation 

conditions. This paper investigates the fuzzy modeling of 

a laboratory scale system of anaerobic tapered fluidized 

bed reactor (ATFBR). The studied system is the anaerobic 

digestion of synthetic wastewater derived from the starch 

processing industries. The experiment was carried out in 

a mesophilic ATFBR reactor with mesoporous granulated 

activated carbon as bacterial support.  

The fuzzy system was generated and trained by a modified 

version of the Projection based Rule Extraction (PRE) 

method using the obtained experimental data, and it 

applies the inference technique Fuzzy Rule Interpolation 

based on Polar Cuts (FRIPOC).  

The output parameters predicted by the tuned system have 

been found to be very close to the corresponding 

experimental ones and the model was validated by 

replicative testing. 

 

Keywords:  fuzzy modeling, FRIPOC, Anaerobic Tapered 

Fluidized bed Reactor, OLR, COD, BOD, pH. 

 

 

I. INTRODUCTION 

 

 

The functional relationship between the input and output 

data of a system can be modeled in several ways. However, 

in case of multidimensional input and output the task 

becomes a bit complicated and therefore solutions based on 

fuzzy logic or neural networks gain a wide application area. 

The popularity of fuzzy systems in function approximation 

can be explained by the simple rule expression and the self 

explaining capability of fuzzy rules.  

 

A. Sparse systems versus dense systems 

 

Traditional fuzzy systems working with inference 

techniques like Zadeh’s, Mamdani’s or Takagi-Sugeno’s 

determine the conclusion by means of rule-matching. 

Hereupon the conclusion is calculated as a weighted 

combination of rule consequents (fuzzy sets or the crisp 

consequent function) with non-zero matching, where the 

weights depend on the degree of matching. These methods 

require a dense (covering) character of the rule base in 

order to ensure a proper output in case of each input value. 

It means that for all the possible observations it should 

exist at least one fuzzy rule whose antecedent part overlaps 

the observation at least partially. For example Fig. 1 

presents the antecedent space of a dense rule base with two 

input dimensions (A1 and A2). For simplicity all linguistic 

terms are trapezoid shaped and the partition is a Ruspini 

one. They ensure an ε=0.5 coverage of the input space.  

 

The required dense character of the rule base can be 

ensured easily in case of a one or two dimensional input 

space with partitions containing a reduced number of fuzzy 

sets. However, increasing the number of input linguistic 

variables or/and the linguistic terms in the partitions the 

demanded coverage of the input space is realizable only at 

the expense of a huge number of rules. In the general case 

the number of required rules (N) can be calculated by the 

formula  
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Fig. 1. Antecedent space of a dense rule base 
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where nin denotes the number of input dimensions, and ki is 

the number of linguistic terms in the i
th

 input dimension. 

Considering the same number of fuzzy sets in each 

dimension Fig. 2 demonstrates that even by relatively low 

values of both parameters the number of rules increases 

exponentially. 

 

The rule number explosion leads to increased system 

complexity and results in grown storage demand and 

extended time consumption of the output calculation. The 

problem can be solved by applying sparse rule bases 

instead of using dense ones. A sparse rule base does not 

ensure a full coverage of the input space (see Fig. 3.) 

containing a reduced number of rules. Generally it can be 

generated in two ways.  

 

The first approach [13] starts from a dense rule base and 

decreases the complexity by eliminating the rules 

considered as non relevant ones. The second approach 

suggests the generation of a sparse rule base straight from 

the available input-output data. These methods either 

intend the determination of the so-called “optimal fuzzy 

rules” [14] [15] or apply fuzzy clustering (e.g. [4] [18] [20] 

[21] [5]).  

 

We followed the second approach by using a modified 

version of the Projection based Rule Extraction (PRE) [5] 

method for the generation of raw fuzzy systems that model 

the process being studied. Section II.B presents the applied 

technique shortly. 

B. Fuzzy Rule Interpolation based Reasoning 

 

In a sparse rule base there are no rules for a set of possible 

input values (observations). Fig. 3 presents the input space 

of a system applying a sparse rule base. There are two input 

dimensions and the rule base consists of five rules. In case 

of the observation A
*
 there is no rule whose antecedent part 

would overlap the observation at least partially. Therefore 

the classical compositional reasoning methods cannot 

afford an acceptable output and special approximate 

inference techniques are needed. 

 

There are several such methods with more or less 

constrained field of application. Most of them are based on 

fuzzy rule interpolation. As first of its kind the KH method, 

introduced by Kóczy and Hirota [12], calculates the 

conclusion by its α-cuts using a linear interpolation based 

on the proportion, in which the observation divides the 

distance between the antecedents of the two neighboring 

rules (Fundamental Equation of Rule Interpolation - FERI). 

In spite of its drawbacks it became very popular due to its 

low computational complexity and easy implementability. 

 

Later several other methods were developed aiming the 

extension of applicability of the KH method or the 

development completely new concepts. These techniques 

can be divided into two groups depending on whether they 

are producing the estimated conclusion directly or they are 

interpolating an intermediate rule first. 

 

Relevant members of the first group are among others the 

KH method [12], the MACI [19], the FIVE [16] introduced 

by Kovács and Kóczy, the IMUL proposed by Wong, 

Gedeon and Tikk [22], the method based on the 

conservation of the fuzziness suggested by Gedeon and 

Kóczy and the interpolative reasoning based on graduality 

introduced by Bouchon-Meunier, Marsala and Rifqi [3]. 

The structure of the methods belonging to the second group 

can be described best by the generalized methodology 

(GM) defined by Baranyi et al in [1]. Typical members of 

this group are e.g. the technique family proposed by 

Baranyi et al. in [1], the IGRV [7] developed by Huang and 

Shen, the LESFRI [9] suggested by Johanyák and Kovács, 

the FRIPOC [8] proposed by Johanyák and Kovács, and the 

VEIN introduced in [11]. The main ideas of the method 

FRIPOC applied in course of the modeling are recalled in 

section 3.  

The rest of this paper is organized as follows: Section II 

describes the applied rule base generation and parameter 

identification methods as well as the inference technique. 

Section III introduces briefly the modeled system. The 

results are presented and discussed in Section IV. 

 

II. FUZZY SYSTEM GENERATION 

 

A. Rule Base Generation and Parameter Identification 

 

The applied rule base generation method follows the basic 

concepts of the method PRE [5]. It produces a Single Input 

Single Output (SISO) or a Multiple Input Single Output 
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Fig. 2. Number of rules in a dense rule base depending on the number of 

input dimensions and the number of linguistic terms in a dimension 

 

 
 

Fig. 3. Antecedent space of a sparse rule base 



 

3 

(MISO) fuzzy system and creates a sparse rule base in most 

of the MISO cases. Thus it ensures a significant complexity 

reduction in comparison to the methods producing always a 

dense rule base. The method consists of six steps. They are 

the followings. 

 

1) Doing a one dimensional FCM clustering [2] in the 

current output dimension. The optimal cluster number 

is determined by the minimal FS index [6]. In order to 

avoid the complexity explosion one should apply a 

maximum limit (e.g. 15 clusters).  

 

2) Generation of the output partition by using trapezoidal 

shaped fuzzy sets and Ruspini partition. The core of 

the trapezoids is approximated from the clusters using 

the endpoints of the horizontal cut at α=0.85 conform 

the suggestions in [5]. 

 

3) Projection of the sets into the antecedent space. For 

each consequent linguistic term one seeks those data 

points that have the maximal membership value in the 

linguistic term. Next in each input dimension a one 

dimensional FCM clustering of the input values is 

done corresponding to the found data points. 

 

4) Generation of the input partitions. For each input 

dimension one collects the cluster centers obtained in 

the previous step and creates the linguistic terms 

similar to the case of step 2. 

 

5) Rule base creation. The rules are determined from the 

relationship discovered by the projection in step 3. In 

case of a SISO system the rule base always will be 

dense. However in case of a MISO system the 

resulting rule base is sparse. 

 

6) Parameter identification. Here first one has to select a 

parameter parameterization strategy. The comparative 

study in [10] shows that the use of the abscissas of the 

four characteristic points of a trapezoid gives the best 

results. The tuning is performed by an iterative 

gradient descent process where all parameters are 

adjusted individually repeatedly in order to increase 

the performance index of the system. 

 

B. Fuzzy Inference method 

 

We applied the method FRIPOC [8] as fuzzy inference 

technique. It belongs to the group of two-step fuzzy rule 

interpolation techniques. In the first step it determines a 

new rule whose antecedent sets are situated in the same 

position as the sets describing the observation, i.e. their 

reference point are identical in each antecedent dimension. 

The shape of the antecedent and consequent linguistic 

terms is calculated by a set interpolation technique that is 

based on the concept of linguistic term shifting and polar 

cuts. The position of the consequent sets is determined by 

an adapted version of the Sherpard interpolation [17]. 

 

The fuzzy sets representing the final conclusion are 

determined in the second step of FRIPOC applying a 

special single rule reasoning technique that is also based on 

polar cuts and which determines the shape of the new 

linguistic term going out from the differences between the 

antecedent sets of the interpolated rule and the sets that 

represent the observation. 

 

III. ANAEROBIC TAPERED FLUIDIZED BED 

REACTOR 

 

A. Experimental Set up 
 

A schematic diagram of the experimental set up is shown in 

Fig. 4. The Anaerobic Tapered Fluidized Bed Reactor 

(ATFBR) consists essentially of conical shaped acrylic 

column of 5
0
 taper angle with a total volume of 7.8 (l). A 

static bed volume of 500 (cm
3
) of mesoporus Granulated 

Activated Carbon (GAC) was used as a biomass carrier. 

The effluent was recycled from the top to the bottom of the 

reactor using a magnetic driven polypropylene centrifugal 

pump operated at a constant rate enough to provide 

complete fluidization of the GAC. The recycle rate created 

essentially well mixed conditions in the reactor. The 

settlement zone of the reactor contained a conical gas 

liquid separator to allow venting of the biogas produced. 

Sampling ports were provided along the column length to 

obtain bed samples. Influent was pumped in continuously 

at the bottom of the reactor by means of a peristaltic pump 

and effluent was withdrawn from the top. Biogas produced 

from the reactor was collected by a 20 (l) displacement jar 

which contains 10 % sodium hydroxide solution. 

 

B.  Reactor operation 

 

 
 

Fig. 4. Schematic diagram of an anaerobic tapered fluidized bed reactor  
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The experimental protocol was designed to examine the 

effect of the Organic Loading Rate (OLR) on the efficiency 

of the ATFBR. The ATFBR was subjected to a steady-state 

operation over a range of hydraulic retention time of 27 to 

12 hours. The volumetric Chemical Oxygen Demand 

(COD) loadings were between 1.10 and 15.74 (kg/m
3
/d). 

The reactor was operated for four different flow rates and 

five different concentrations with the optimum superficial 

velocity (2.5 Umf) which gives the maximum COD 

removal.  

The chosen flow rates were 7, 10, 13, and 16 (lpd) and 

COD concentrations of 1.1, 2.0, 3.0, 4.0 and 5.0 (kg/l). The 

reactor is operated initially for a flow rate of 7 (lpd) for the 

above different concentrations. Then for the particular 

COD concentration the reactor was operated for 5 days in 

order to study the performance. The attainment of the 

steady-state was verified after an initial period by checking 

whether the constant effluent characteristic values (COD 

removal and biogas generation) were the mean of the last 

measurements in each stage.  

The COD removal efficiency was found to be 91-92% 

during the particular OLR. Then the COD concentration 

was increased to 10 – 15% daily till the next chosen COD 

concentration was reached. Again at that particular OLR 

the reactor is operated for 5 days. The experiment was 

repeated for the remaining three flow rates.  

During the operation of the ATFBR, temperature, pH, 

COD and Biological Oxygen Demand (BOD) for influent 

and effluent waste water, biogas production rate, effluent 

total volatile fatty acids and alkalinity concentration were 

monitored daily. The volume of biogas produced in the 

reactor was directly measured in terms of the volume salt 

solution displaced from the gas. All analytical 

determinations were performed according to “Standard 

Methods”. 

 

IV. FUZZY MODELING OF THE ATFBR SYSTEM 

 

 

In course of the system training we used a data set of 78 

points which were taken during the steady state operation 

of the reactor (when the efficiency of the reactor was 90 – 

92%). Each of them was defined by 4 inputs (Flow rate, 

COD, pH and BOD) and 5 output (COD, Biogas, Volatile 

Fatty Acids, Alkalinity and BOD) values. Based on the 

above presented raw rule base generation and system 

identification methods the output dimensions were treated 

separately, practically we created five parallel MISO fuzzy 

systems each dealing with only one output dimension. The 

systems were tuned for the fuzzy reasoning method 

FRIPOC and the COG defuzzification was used.  

 

We used two performance indexes for the evaluation of the 

systems. The first of them is the root mean square 

(quadratic mean) of the error. We chose it owing to its 

comprehensibility and comparability to the range of the 

output linguistic variable. Its value is calculated by  
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where M is the number of training data points, jy  is the 

output of the j
th

 data point in the current output dimension 

and jŷ  is the output calculated by the system. The second 

performance index was the relative value of RMSE to the 

range (RMSEP) expressed in percentage 

 100⋅=
DR

RMSE
RMSEP  (3) 

where DR  is the range of the output dimension. The 

values of the performance indexes at the end of the tuning 

are presented in table 1. 

 

Each of the systems has four input dimensions; therefore 

the differences between the measured and calculated output 

values can be visualized only by 2D plots where the 

horizontal axis represents the ordinal number of data 

points. Figures 5-14 give a view of the results of the 

modeling. Each pair corresponds to an output dimension. 

The Fig. 5, 7, 9, 11, 13 represent the measured (circles) and 

the calculated (pentagrams) values. The Fig. 6, 8, 10, 12, 

14 show the relative error for each data point calculated by 
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In case of the linguistic variable effluent COD, the 

calculated values give a good approximation of the original 

ones achieving an RMSEP=4.11 % (Fig. 5 and 6). There 

are only a few points where a significant difference can be 

stated. 

The system modeling the functional relationship between 

the input and biogas gave the best results (RMSEP=2.46 

%). Both of the figures 7 and 8 show a very good 

approximation capability in this case. 

 

In case of the third (Volatile Fatty Acids) and fourth 

(Alkalinity) dimensions we obtained moderate results. 

There are 3-4 peak points in the RE diagram in both cases. 

An improvement of the performance could be feasible by 

expanding the rule bases by some new rules and by 

enhancing the tuning algorithm. 

 

Although the RMSEP of the linguistic variable (BOD) has 

a moderate value (9.96 %) one can observe clearly that the 

values calculated by the fuzzy system attain a very good 

coverage of the measured ones. 

TABLE 1. Results of the tuning process 

 

 RMSE RMSEP (%) 

COD 27.7827 4.11 

Biogas 0.8012 2.46 

VFA 18.2828 7.75 

Alkalinity 76.0786 9.67 

BOD 88.4201 9.96 
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The biological system is a complex one and the 

repeatability of the system behavior is low. So the training 

based on certain selected points may not hold precisely for 

other data points. Even then the RMSEP % for all the 

output is quite reasonable. 

 

V. CONCLUSIONS 

 

 

In this paper, we have generated an aggregative fuzzy 

system – in fact five independent systems – in order to 

model the real system, which was described by 78 data 

points for the treatment of starch waste water using 

anaerobic tapered fluidized bed reactor. This is done by 

employing fuzzy modeling to identify the nonlinear 

relationship between the various experimental parameters. 

 

We have validated our technique by replicative testing and 

had RMSEP % of 4.11 for effluent COD, 2.46 for Biogas, 

7.75 for Volatile fatty acids, 9.87 for alkalinity and 9.96 for 

effluent BOD which is very much encouraging for further 

research in this area. Further no such work on fuzzy 

modeling using FRIPOC in the area of waste water 

treatment has been reported in the literatures. 
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Fig. 5. Measured and calculated values in the effluent COD (output) 

dimension 
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Fig.6. Relative error in the effluent COD (output) dimension 
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Fig. 7. Measured and calculated values in the Biogas output dimension 
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Fig. 8. Relative error in the Biogas output dimension 
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Fig. 9. Measured and calculated values in the volatile fatty acids output 

dimension 
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Fig. 10. Relative error in the volatile fatty acid output dimension 
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Fig. 11. Measured and calculated values in the alkalinity output 

dimension. 
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Fig. 12. Relative error in the alkalinity output dimension 

 

0 20 40 60 80
0

500

1000

B
O

D
o
u
t

Data points
 

 

Fig. 13. Measured and calculated values of the BODout dimension 
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Fig. 14. Relative error of the BODout dimension 

 


