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1. Introduction 
The right selection of cutting parameters for machining operations plays a cru-
cial role in achieving the desired economical and quality goals. A key issue of 
the optimization models developed as a solution of this problem is the reliable 
prediction of tool life, which is strongly related to the identification of the func-
tional relationship between the tool life and its main influential factors, i.e. the 
cutting speed and the feed rate. 

Several models have been describing this topic, e.g. exponential [19], Taylor 
[19], corrected Taylor [19], Gilbert [2], Kronenberg [14], etc. and their parame-
ters can be estimated from experimental tests using some optimization methods. 
However, the estimation capability (approximation accuracy) of these methods 
decreases when one increases the studied interval of cutting speed and feed rate. 
Thus soft computing techniques like fuzzy systems and neural networks, which 
proved to be universal function approximators [17, 24] when some conditions 
are fulfilled, can find a much promising application area. 

The objective of the present study is the justification of practical applicability of 
sparse fuzzy systems for modelling real-life problems, and particularly in this 
paper the fuzzy modelling of tool life in milling, using the rule base generation 
method RBE-DSS [7] and the inference mechanism LESFRI [5] is studied. 

The rest of this paper is organized as follows. Section 2 recalls some basic con-
cepts of fuzzy reasoning and sparse rule bases. Section 3 presents the inference 
technique LESFRI followed by a survey on the model identification method 
RBE-DSS in section 4. The results are presented and discussed in section 5. 
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2. Fuzzy reasoning in sparse systems 
Fuzzy reasoning is based on IF-THEN rules, whose antecedent and consequent 
parts are linguistic terms (fuzzy sets). The early developed inference techniques, 
also called compositional or classic methods (e.g. Zadeh [26], Mamdani [16], 
Takagi-Sugeno [22] or Larsen [15]), require a full coverage of the input space, 
i.e. for each enabled input value (observation) the knowledge base of the system 
should contain at least one rule whose antecedent part overlaps the observation 
at least partially. This condition can be expressed by ε>0 in 
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where iX  is the i th dimension of the antecedent space (universe of discourse), 
∗
iA  is the fuzzy set describing the observation in the i th antecedent dimension, 

ijA  is the j th linguistic term of the i th antecedent dimension, t is an arbitrary t-

norm, in  is the number of the linguistic terms in the i th antecedent dimension, N 

is the number of the antecedent dimensions and ( ).maxarg
ε

 finds the value ε for 

which the expression in parentheses reaches its maximum. 

Rule bases fulfilling condition  (1) with ε>0 are called dense ones (see Fig. 1). 
Usually they contain a large number of rules that increases exponentially with 
the number of input dimensions. This effect was one of the main reasons that led 
to the development of fuzzy systems that are able to produce the output relaying 
only on the relevant rules. Generally they apply so called sparse rule bases (see 
Fig. 4), i.e. their rule bases ensure only the fulfilment of  (1) for ε=0. 

 

Figure 1. Antecedent space of a dense rule base 

Since the classical fuzzy inference methods are able to work with sparse rule 
bases, new solutions for fuzzy reasoning had to be developed. Starting from the 
early 1990s several such methods have been published. They form two main 
groups depending on the applied approach. 
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The members of the first group calculate the conclusion directly from the obser-
vation and some rules. Here belongs the most known and firstly developed KH 
(Kóczy and Hirota) [12] method, and its modified and enhanced versions like the 
MACI [23] proposed by Tikk and Baranyi, which avoided the abnormal conclu-
sion by introducing a coordinate transformation and the FIVE published by 
Kovács and Kóczy [10, 11] that solved the task of rule interpolation in the vague 
environment. 

The methods belonging to the second group follow the concepts of the general-
ized methodology of fuzzy rule interpolation (GM) [1], i.e. determine the con-
clusion by interpolating first a new rule corresponding to the position of the ob-
servation and next calculate the conclusion based on the dissimilarities between 
the observation and the antecedent part of the new rule. Relevant members of 
this group are among others the techniques suggested in [1], the LESFRI (Jo-
hanyák and Kovács) [5] that uses the method of least squares, the FRIPOC (Jo-
hanyák and Kovács) [4] and IGRV (Huang and Shen). 

3. LESFRI 
Owing to its advantageous properties we chose LESFRI (LEast Squares based 
Fuzzy Rule Interpolation) [5] as fuzzy reasoning method. It follows the concepts 
of GM (Generalized Methodology of fuzzy rule interpolation) [1] by calculating 
the conclusion in two steps. 

Firstly a new rule is interpolated corresponding to the position of the input val-
ues, i.e. the reference points of the antecedent sets are identical with the refer-
ence points of the observation in each input dimension. The task of rule interpo-
lation is solved in three phases. Firstly the antecedent membership functions are 
calculated using the FEAT-LS (Fuzzy sEt interpolATion based on method of 
Least Squares) [6] fuzzy set interpolation method. Next one determines the posi-
tion (reference points) of the consequent linguistic terms of the new rule using 
an adapted version of the Shepard interpolation [18]. The last phase is the calcu-
lation of the shape of the consequent sets using the same set interpolation tech-
nique (FEAT-LS) as in the first phase. 

LESFRI determines the conclusion in its second step using the single rule rea-
soning method SURE-LS (Single rUle REasoning based on the method of Least 
Squares) [5] that calculates the necessary modifications of the new rule’s conse-
quent sets based on the dissimilarities between the rule antecedent and observa-
tion sets.  

3.1. FEAT-LS 

The FEAT-LS method [6] aims the determination of a new linguistic term in a 
fuzzy partition based on a supposed regularity between the known sets of the 
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partition. First all linguistic terms are shifted horizontally into the interpolation 
point (xi on Fig. 2 left side) and next, one calculates the shape of the new set 
from the overlapped membership functions (Ai Fig. 2 right side). 

FEAT-LS targets the preservation of the characteristic shape type of the partition 
(e.g. trapezoidal on Fig. 2) therefore it applies the method of the weighted least 
squares for the identification of the new set’s parameters. The weighting is re-
lated to the original distance between the sets and the interpolation point. 
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Figure 2. Original partition and interpolation point (xi) 

The calculations are done α-cut wise using only the α-levels corresponding to 
the characteristic points of the partition’s default shape type. 

3.2. SURE-LS 

The revision method SURE-LS (Single rUle REasoning based on the method of 
Least Squares) [5] is a special fuzzy inference technique that takes into consid-
eration only one rule for the determination of the conclusion. The method is 
applicable when its antecedent sets are in the same position as the observation 
sets in each antecedent dimension and the heights (maximal membership value) 
of all involved fuzzy sets are the same. 

SURE-LS calculates the conclusion by modifying the consequent sets of the 
rule. This modification is related to the similarity between the antecedent lin-
guistic terms and the observation sets, which is measured independently in each 
input dimension by the means of their fuzzy distance [13] (see Fig. 3) and is 
aggregated by calculating the average distance. 

In order to keep low the computational complexity, which is an essential re-
quirement in practical applications, only the α-levels corresponding to break-
points (in case of piece-wise linear shape types) or characteristic points (in case 
of other shape types) are considered. 

SURE-LS was developed for the case when all membership functions of a parti-
tion belongs to the same shape type (e.g. trapezoidal) and the corresponding 
break/characteristic points are situated at the same α-levels in case of each fuzzy 
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set. In order to ensure this feature also in case of the conclusion the final shape is 
calculated using the method of least squares. 
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Figure 3. Lower ( ( )lk
L AAd ,α ) and upper ( ( )lk

U AAd ,α ) fuzzy distance at the α-
level 

4. Fuzzy model identification by RBE-DSS 
The RBE-DSS (Rule Base Extension based on Default Set Shapes) [7] fuzzy 
model identification method provides the automatic creation of a sparse rule 
base with a low number of rules (low system complexity) from sample input-
output data. The number of data points is not restricted. Although the system is 
tuned for a specific fuzzy reasoning method, several practical experiments 
showed good system performance also in case of reasoning with other methods 
that belong to the same FRIT family (e.g. the techniques that follow the concepts 
of the GM [1]).  

The key idea of the Rule Base Extension is that one first creates two starting 
rules that describe the minimum and the maximum of the output. Next a parame-
ter identification algorithm is started that tunes the parameters of the fuzzy sets 
and after each step evaluates the system by means of a performance index. If the 
amelioration of the performance index slows down or stops in course of the it-
eration a new rule is produced corresponding to the output point where the dif-
ference between the prescribed (measured value) and calculated (obtained by 
fuzzy reasoning) is maximal. The algorithm stops if either the prescribed maxi-
mal iteration number is reached or the performance index becomes better than a 
predefined threshold value. 

4.1. Performance index 

In course of the parameter identification process after each parameter adjustment 
the resulting parameter set is evaluated by calculating the system output for a 
collection of predefined input data, for which the expected output values are 
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known. In order to compare the results obtained with different parameter sets a 
performance index is calculated after each system evaluation. 

RBE-DSS supports the application of any kinds of performance indices that 
express the goodness of a fuzzy system with one numerical value, which de-
creases with the improvement of the system. A list containing several suitable 
performance indices was published in [8]. 

5. Fuzzy modelling of the tool life 
In course of the tool life modelling we used results obtained by milling experi-
ments carried out by carbide inserts DA20 and DA25. The data sets represented 
9 experiments in the first case (DA20) and 15 experiments in the second one 
(DA25). In both cases two inputs (cutting speed – vc in m/min and feed rate – fz 
in mm/rev,tooth) and one output dimension (tool life – T in min) determined the 
fuzzy system. 

We created separate models for the different carbide insert types using the 
RuleMaker [8] and FRI [9] Matlab ToolBoxes and applying RBE-DSS for rule 
base generation as well as LESFRI for fuzzy reasoning. The crisp output values 
were calculated applying centre of area (COA) defuzzification. 

We used the relative value of the root mean square (quadratic mean) of the error 
(RMSEP) as performance index. We chose it owing to its easy interpretability 
and comparability to the range of the output. Its value [25] is calculated by 
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where DR is the range of the output, N is the number of the data points, Ti is the 

measured tool life in the i th experiment and iT̂  is the tool life value obtained by 

the model for the inputs corresponding to the i th experiment. 

Both fuzzy systems apply sparse rule bases with 9 rules in the first case and 11 
rules in the second one. Figure 4 visualizes the antecedent spaces of the rule 
bases. Each rule base is represented by a pyramid defined by the trapezoidal 
shaped antecedent fuzzy sets in the two input dimensions. 

The generated fuzzy models were compared with former results [20, 21] ob-
tained with models based on exponential tool life equation, Taylor tool life equa-
tion and corrected Taylor equation. 
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Figure 4. Antecedent space of the fuzzy systems DA20 (left) and DA25 (right) 

As a comprehensive evaluation we can state that in case of both carbide insert 
types the fuzzy system proved to give better approximation of the measured data 
(see Tab. 1). The system modelling the functional relationship between the input 
and output in case of DA20 gave the overall best results. 

Table 1. Performance indices calculated in case of exponential, Taylor, corrected 
Taylor and fuzzy models 

 Exp. Taylor T. corr. Fuzzy 

DA20 1.1223 % 2.8816 % 4.7610 % 0.0473 % 

DA25 0.7045 % 3.9486 % 7.2525 % 0.3315 % 

 

Fig. 5 and 6 show the variation of the deviation (dT) between the calculated and 
measured tool life values in case of each modelling approach. The variable dT is 
plotted against the ordinal number of the data points (np). 
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Figure 5. Deviation between the measured and calculated tool life values in case 
of the four models for DA20 
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Figure 6. Deviation between the measured and calculated tool life values in case 
of the four models for DA25 

Examining the individual deviations it is clearly observable that while in case of 
the Taylor and corrected Taylor models there are huge peek points, in case of the 
fuzzy model the curve describing the deviations is smoother.  

The good approximation capability of the fuzzy model is also reflected by the 
Figure 7, where there is a well observable overlapping between the measured 
and calculated data points. 
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Figure 7. Measured and calculated data  
DA20 (left) and DA25 (right) 

6. Conclusions 
This paper presented and evaluated the application of soft computing techniques 
for modelling of the tool life in case of milling operation using DA20 and DA25 
carbide insert types. The applied fuzzy model identification technique was RBE-
DSS [7] using the fuzzy reasoning method LESFRI [5]. Our goal was the gen-
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eration of low complexity rule bases and the achievement of a better approxima-
tion than the previously published models. 

The results showed that the selected method pair has proved to be a promising 
technique for tool life modelling. The established models can be used as support-
ing tool for researchers studying the machining operations. The enhancement of 
the applied methods and the study of their wider applicability are subject to fur-
ther research work. 

Appendix 
Tool life models. In metal cutting, the most important economical factor is the 
tool life (T in min), i.e. the effective cutting time between two edge resharpening 
or – in case of indexable carbide inserts – edge change. The tool life is influ-
enced in the highest degree by cutting speed (vc in m/min). The relation between 
cutting speed and tool life is generally expressed in form of various tool life 
models. The most frequent exponential tool life model is originated with F. W. 
Taylor and can be written in form of  
 lg vc + m . lg T = lg Cv 

where  m and Cv are constant values (Taylor-equation). 

Carbide tool materials. In modern metal cutting technology, the most 
frequently used tool (edge) materials are cemented carbides, consisting of 
hard metal carbides (WC, TiC, TaC, etc.) and cobalt as a binder material. 
Cemented carbides are produced by powder metallurgy technology, 
pressed into regular forms and sizes. According to the ISO-classification, 
the DA-grades used in our experiments (see Chapter 5.) are recommended 
for machining of steels. The carbide grade denoted by DA20 is harder 
(due to its less cobalt content) than that of DA25.     
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Éltartam modellezés RBE-DSS és LESFRI segítségével 

Johanyák Zsolt Csaba – Szabó András 

Összefoglalás 

A forgácsolási paraméterek helyes megválasztása lényeges szerepet játszik a 
kívánt gazdasági és minıségi célok elérésében. A feladat megoldásaként kidol-
gozott optimalizációs modellek egyik kulcskérdése a megbízható éltartam elıre-
jelzés, ami szorosan kapcsolódik az éltartam és azt befolyásoló tényezık közötti 
kapcsolat megismeréséhez. 

Dolgozatunkban lágy számítási módszerek éltartam területén való alkalmazható-
ságát vizsgáltuk DA20 és DA25 anyagú keményfém marólapkákra. Az 
éltartamhoz kapcsolódó kis komplexitású fuzzy modelleket RBE-DSS módszer-
rel állítottuk elı, illetve a LESFRI következtetési technikát alkalmaztuk. Mind-
két esetben sikerült a korábban közölteknél pontosabb modelleket elıállítani. 

Standzeitmodellierung mit RBE-DSS Methode und 
LESFRI Inferenz 

Johanyák, Zsolt Csaba – Szabó, András 

Zusammenfassung 

Die richtige Auswahl der Schnittdaten spielt eine entscheidende Rolle bei der 
Erreichung der gewünschten Qualitäts- und Wirtschaftszielen. Eine zentrale 
Frage der Optimierungsmodelle, die als Lösung für dieses Problem entwickelt 
wurden, ist die zuverlässige Vorhersage der Standzeit, die in engem Zusammen-
hang mit der Identifizierung der funktionalen Beziehung zwischen der Standzeit 
und ihren wichtigsten Einflussfaktoren ist. 

Dieser Artikel untersucht und bewertet die Anwendungsmöglichkeiten den Soft-
Computing-Techniken für die Modellierung der Standzeit bei Fräsen in der Falle 
den Hartmetalleinsatztypen DA20 und DA25. Wir haben Fuzzy Modellen mit 
niedriger Komplexität hergestellt. Die angewendeten Techniken waren RBE-
DSS [7] für Modellidentifizierung und LESFRI [5] für die Fuzzy Inferenz. Im 
Fall der beiden Modelle die resultierenden Performance-Indizes waren besser als 
die jenige die zuvor veröffentlicht wurden. 


