Johanyak, Zs. Cs. and Szabd, A.: Tool life modgllising RBE-DSS method and
LESFRI inference mechanism, A GAMF K&zleményei, steamét, XXII. (2008),
ISSN 0230-6182, pp. 17-28.

http://johanyak.hu

A GAMF Kozlemeényei, Kecskemét, XXII. évfolyam (2008

Tool Life Modelling Using RBE-DSS Method
and LESFRI Inference Mechanism?

Johanyak, Zsolt Csalfa— Szab6, Andras

1. Introduction

The right selection of cutting parameters for matty operations plays a cru-
cial role in achieving the desired economical aodlity goals. A key issue of
the optimization models developed as a solutiothizf problem is the reliable
prediction of tool life, which is strongly relateéd the identification of the func-
tional relationship between the tool life and itaiminfluential factors, i.e. the
cutting speed and the feed rate.

Several models have been describing this topic, exgonential [19], Taylor

[19], corrected Taylor [19], Gilbert [2], Kronenlgefl14], etc. and their parame-
ters can be estimated from experimental tests wnge optimization methods.
However, the estimation capability (approximatiatwracy) of these methods
decreases when one increases the studied intdrgatting speed and feed rate.
Thus soft computing techniques like fuzzy systemd meural networks, which
proved to be universal function approximators [24] when some conditions
are fulfilled, can find a much promising applicatiarea.

The objective of the present study is the justifamaof practical applicability of
sparse fuzzy systems for modelling real-life praide and particularly in this
paper the fuzzy modelling of tool life in millingsing the rule base generation
method RBE-DSS [7] and the inference mechanism IEE$$] is studied.

The rest of this paper is organized as followstiBe@ recalls some basic con-
cepts of fuzzy reasoning and sparse rule basetosecpresents the inference
technique LESFRI followed by a survey on the moidelntification method
RBE-DSS in section 4. The results are presentedisaedssed in section 5.
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2. Fuzzy reasoning in sparse systems

Fuzzy reasoning is based on IF-THEN rules, whosecadent and consequent
parts are linguistic terms (fuzzy sets). The eddyeloped inference techniques,
also called compositional or classic methods (Bagleh [26], Mamdani [16],
Takagi-Sugeno [22] or Larsen [15]), require a fidiverage of the input space,
i.e. for each enabled input value (observation)kim@vledge base of the system
should contain at least one rule whose antecedehtoperlaps the observation
at least partially. This condition can be expredsee>0 in

argm£a><miniN:1{ mak};l{ t(A'j : A)} }2 & 0A' D X, ) e0[o1, (@

where X; is thei™ dimension of the antecedent space (universe ebdise),
A’ is the fuzzy set describing the observation inithantecedent dimension,
A is thej™ linguistic term of thé™ antecedent dimensiohjs an arbitrary t-

norm, n, is the number of the linguistic terms in tffeantecedent dimensioN,
is the number of the antecedent dimensions amgthax() finds the value: for
£

which the expression in parentheses reaches itsmaax

Rule bases fulfilling condition (1) witb>0 are called dense ones (see Fig. 1).
Usually they contain a large number of rules tinareases exponentially with
the number of input dimensions. This effect was afithe main reasons that led
to the development of fuzzy systems that are abfgaduce the output relaying
only on the relevant rules. Generally they applycalbed sparse rule bases (see
Fig. 4), i.e. their rule bases ensure only thelfént of (1) fore=0.

Figure 1. Antecedent space of a dense rule base

Since the classical fuzzy inference methods are &blwork with sparse rule
bases, new solutions for fuzzy reasoning had tddweloped. Starting from the
early 1990s several such methods have been puthlidiey form two main

groups depending on the applied approach.
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The members of the first group calculate the caictudirectly from the obser-
vation and some rules. Here belongs the most krenvehfirstly developed KH
(Kéczy and Hirota) [12] method, and its modifiedla@nhanced versions like the
MACI [23] proposed by Tikk and Baranyi, which aveilthe abnormal conclu-
sion by introducing a coordinate transformation dahd FIVE published by
Kovéacs and Kdczy [10, 11] that solved the taskutd interpolation in the vague
environment.

The methods belonging to the second group follasvabncepts of the general-
ized methodology of fuzzy rule interpolation (GM)][i.e. determine the con-
clusion by interpolating first a new rule corresgimg to the position of the ob-
servation and next calculate the conclusion basetth® dissimilarities between
the observation and the antecedent part of the rnéawv Relevant members of
this group are among others the techniques sugbestg], the LESFRI (Jo-
hanyak and Kovacs) [5] that uses the method ot k@sares, the FRIPOC (Jo-
hanyak and Kovacs) [4] and IGRV (Huang and Shen).

3. LESFRI

Owing to its advantageous properties we chose LESERast Squares based
Fuzzy Rule Interpolation) [5] as fuzzy reasoningimod. It follows the concepts
of GM (Generalized Methodology of fuzzy rule intelgtion) [1] by calculating
the conclusion in two steps.

Firstly a new rule is interpolated correspondindhe position of the input val-

ues, i.e. the reference points of the antecedestase identical with the refer-

ence points of the observation in each input dineend he task of rule interpo-

lation is solved in three phases. Firstly the adeat membership functions are
calculated using the FEAT-LS (Fuzzy sEt interpoléTibased on method of
Least Squares) [6] fuzzy set interpolation methdekt one determines the posi-
tion (reference points) of the consequent lingaigtrms of the new rule using
an adapted version of the Shepard interpolatiop & last phase is the calcu-
lation of the shape of the consequent sets usimgdme set interpolation tech-
nique (FEAT-LS) as in the first phase.

LESFRI determines the conclusion in its second a&pg the single rule rea-

soning method SURE-LS (Single rUle REasoning basethe method of Least

Squares) [5] that calculates the necessary motiditaof the new rule’s conse-

guent sets based on the dissimilarities betweemnulbeantecedent and observa-
tion sets.

3.1. FEAT-LS

The FEAT-LS method [6] aims the determination afeav linguistic term in a
fuzzy partition based on a supposed regularity betwthe known sets of the

3
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partition. First all linguistic terms are shiftedrizontally into the interpolation
point X on Fig. 2 left side) and next, one calculatesshape of the new set
from the overlapped membership functioAsHig. 2 right side).

FEAT-LS targets the preservation of the charadtershape type of the partition
(e.g. trapezoidal on Fig. 2) therefore it applies method of the weighted least
squares for the identification of the new set’sapagters. The weighting is re-
lated to the original distance between the setdlamthterpolation point.

0.5 A ‘

0 2 4 6 8 10 12 14 0

Figure 2. Original partition and interpolation pofx)

The calculations are donecut wise using only the-levels corresponding to
the characteristic points of the partition’s defallape type.

3.2. SURE-LS

The revision method SURE-LS (Single rUle REasoriaged on the method of
Least Squares) [5] is a special fuzzy inferencérigpie that takes into consid-
eration only one rule for the determination of ttenclusion. The method is
applicable when its antecedent sets are in the gmsiéon as the observation
sets in each antecedent dimension and the heiglatsirhal membership value)
of all involved fuzzy sets are the same.

SURE-LS calculates the conclusion by modifying tomsequent sets of the
rule. This modification is related to the similgribetween the antecedent lin-
guistic terms and the observation sets, which iasued independently in each
input dimension by the means of their fuzzy diséafit3] (see Fig. 3) and is
aggregated by calculating the average distance.

In order to keep low the computational complexitshich is an essential re-
guirement in practical applications, only thdevels corresponding to break-
points (in case of piece-wise linear shape typegharacteristic points (in case
of other shape types) are considered.

SURE-LS was developed for the case when all merlpefgnctions of a parti-
tion belongs to the same shape type (e.g. trapalzcéehd the corresponding
break/characteristic points are situated at theesalavels in case of each fuzzy
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set. In order to ensure this feature also in casigeoconclusion the final shape is
calculated using the method of least squares.
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Figure 3. Lower ((A.,A)) and upper @" (A, A )) fuzzy distance at the-
level

4. Fuzzy model identification by RBE-DSS

The RBE-DSS (Rule Base Extension based on DefatltS&apes) [7] fuzzy
model identification method provides the automatieation of a sparse rule
base with a low number of rules (low system compjgXrom sample input-

output data. The number of data points is notimstt. Although the system is
tuned for a specific fuzzy reasoning method, sdvpractical experiments
showed good system performance also in case obnmggswith other methods
that belong to the same FRIT family (e.g. the témphes that follow the concepts
of the GM [1]).

The key idea of the Rule Base Extension is that fose creates two starting
rules that describe the minimum and the maximunhefoutput. Next a parame-
ter identification algorithm is started that turtbe parameters of the fuzzy sets
and after each step evaluates the system by méangesformance index. If the
amelioration of the performance index slows dowrstops in course of the it-
eration a new rule is produced corresponding tootitput point where the dif-
ference between the prescribed (measured value)aledlated (obtained by
fuzzy reasoning) is maximal. The algorithm stopsither the prescribed maxi-
mal iteration number is reached or the performandex becomes better than a
predefined threshold value.

4.1. Performance index

In course of the parameter identification procdter @ach parameter adjustment
the resulting parameter set is evaluated by caloglahe system output for a
collection of predefined input data, for which thepected output values are
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known. In order to compare the results obtaineth wifferent parameter sets a
performance index is calculated after each systeatuation.

RBE-DSS supports the application of any kinds offggenance indices that
express the goodness of a fuzzy system with oneericah value, which de-
creases with the improvement of the system. Adisttaining several suitable
performance indices was published in [8].

5. Fuzzy modelling of the tool life

In course of the tool life modelling we used reswbtained by milling experi-
ments carried out by carbide inserts DA20 and DA% data sets represented
9 experiments in the first case (DA20) and 15 erpemts in the second one
(DA25). In both cases two inputs (cutting speed 1 m/min and feed rate fz

in mm/rev,tooth) and one output dimension (toa T in min) determined the
fuzzy system.

We created separate models for the different carldert types using the
RuleMaker [8] and FRI [9] Matlab ToolBoxes and appyy RBE-DSS for rule
base generation as well as LESFRI for fuzzy reagprihe crisp output values
were calculated applying centre of area (COA) dafication.

We used the relative value of the root mean sqfgpradratic mean) of the error
(RMSEP) as performance index. We chose it owingst@asy interpretability
and comparability to the range of the output. ke [25] is calculated by

£f

100 [%)], )

whereDR is the range of the outpud, is the number of the data points,s the
measured tool life in th&" experiment andT; is the tool life value obtained by

the model for the inputs corresponding toithexperiment.

Both fuzzy systems apply sparse rule bases witlleékrin the first case and 11
rules in the second one. Figure 4 visualizes thecadent spaces of the rule
bases. Each rule base is represented by a pyragfilted by the trapezoidal

shaped antecedent fuzzy sets in the two input diioas.

The generated fuzzy models were compared with fomasults [20, 21] ob-
tained with models based on exponential tool lfaation, Taylor tool life equa-
tion and corrected Taylor equation.



Johanyak, Zs. Cs.— Szabd, A.: Tool Life Modellingibg RBE-DSS Method...

002 gg3 . i
i 004 0o o0

0.5

Figure 4. Antecedent space of the fuzzy systems@{ett) and DA25 (right)

As a comprehensive evaluation we can state thehse of both carbide insert
types the fuzzy system proved to give better appration of the measured data
(see Tab. 1). The system modelling the functioakdtionship between the input
and output in case of DA20 gave the overall besilts.

Table 1. Performance indices calculated in casxpbnential, Taylor, corrected
Taylor and fuzzy models

Exp. Taylor T. corr. Fuzzy
DA20 1.1223 % 2.8816 % 4.7610 % 0.0473 %
DA25 0.7045 % 3.9486 % 7.2525 % 0.3315 %

Fig. 5 and 6 show the variation of the deviatidi)(between the calculated and
measured tool life values in case of each mode#pgroach. The variabtél is
plotted against the ordinal number of the datatsdin).

dT -- O - - EXp.
==#== Taylor
—<— T. corr.

Oy T Fuzzy

Figure 5. Deviation between the measured and ea&uikool life values in case
of the four models for DA20
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dT

- O - Exp.
==#== Taylor

Figure 6. Deviation between the measured and eabalkool life values in case
of the four models for DA25

Examining the individual deviations it is clearlipservable that while in case of
the Taylor and corrected Taylor models there agetpeek points, in case of the
fuzzy model the curve describing the deviatiorsni®other.

The good approximation capability of the fuzzy mlodealso reflected by the
Figure 7, where there is a well observable overfappetween the measured
and calculated data points.

6-(|)— [ o Measured T o Measured
© O Calculated || 100 O Calculated
80
[0]
40 =
60 [
40 [
20 [d]
[o] @ @ 20 [o] [o]
B @ 2 °
. [o =l . [0 np | . . [o] @] np
0 2 4 6 8 0 5 10 15

Figure 7. Measured and calculated data
DA20 (left) and DA25 (right)

6. Conclusions

This paper presented and evaluated the applicafisoft computing techniques
for modelling of the tool life in case of millingoeration using DA20 and DA25
carbide insert types. The applied fuzzy model idieation technique was RBE-
DSS [7] using the fuzzy reasoning method LESFRI (&r goal was the gen-
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eration of low complexity rule bases and the adtieent of a better approxima-
tion than the previously published models.

The results showed that the selected method paipiaved to be a promising
technique for tool life modelling. The establishaddels can be used as support-
ing tool for researchers studying the machiningrajiens. The enhancement of
the applied methods and the study of their widgdiegbility are subject to fur-
ther research work.

Appendix

Tool life models.In metal cutting, the most important economicakdads the
tool life (Tin min), i.e. the effective cutting time betwe&otedge resharpening
or — in case of indexable carbide inserts — edgm@h The tool life is influ-
enced in the highest degree ditting speedv.in m/min). The relation between
cutting speed and tool life is generally expressetorm of varioustool life
models.The most frequent exponential tool life model igioated with F. W.
Taylor and can be written in form of

lgve+ m.lgT=IgC,
where mandC, are constant values (Taylor-equation).

Carbide tool materials. In modern metal cutting technology, the most
frequently used tool (edge) materials eeenented carbidegsonsisting of
hardmetal carbidegWC, TiC, TaC, etc.) andobaltas a binder material.
Cemented carbides are produced fpgwder metallurgytechnology,
pressed into regular forms and sizes. Accordindp¢olSO-classification,
the DA-grades used in our experiments (see Chaptare recommended
for machining of steels. The carbide grade dentyedA20 is harder
(due to its less cobalt content) than that of DA25.
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Eltartam modellezés RBE-DSS és LESFRI segitségével
Johanyak Zsolt Csaba — Szab6 Andras
Osszefoglalas

A forgacsolasi paraméterek helyes megvalasztasgedés szerepet jatszik a
kivant gazdasagi és néisegi célok elérésében. A feladat megoldasaként-kido
gozott optimalizaciés modellek egyik kulcskérdésaegbizhato éltartam dre-
jelzés, ami szorosan kapcsolodik az éltartam ébefntyasolo tényeik kozotti
kapcsolat megismeréséhez.

Dolgozatunkban lagy szamitasi modszerek éltartaitetén vald alkalmazhaté-
sagat vizsgaltuk DA20 és DA25 anyagu keményfém lapkékra. Az
éltartamhoz kapcsolodé kis komplexitasa fuzzy miettet RBE-DSS mddszer-
rel allitottuk eb, illetve a LESFRI kdvetkeztetési technikat alkattok. Mind-
két esetben sikertilt a korabban kozoélteknél pobtosaodelleket éallitani.

Standzeitmodellierung mit RBE-DSS Methode und
LESFRI Inferenz

Johanyak, Zsolt Csaba — Szabd, Andras
Zusammenfassung

Die richtige Auswahl der Schnittdaten spielt eiméseheidende Rolle bei der
Erreichung der gewunschten Qualitats- und Wirtdskadlen. Eine zentrale
Frage der Optimierungsmodelle, die als Losung fasebs Problem entwickelt
wurden, ist die zuverlassige Vorhersage der Standiie in engem Zusammen-
hang mit der Identifizierung der funktionalen Béuriag zwischen der Standzeit
und ihren wichtigsten Einflussfaktoren ist.

Dieser Artikel untersucht und bewertet die Anwerghmdglichkeiten den Soft-
Computing-Techniken fur die Modellierung der Stagitlbei Frasen in der Falle
den Hartmetalleinsatztypen DA20 und DA25. Wir halserzzy Modellen mit
niedriger Komplexitat hergestellt. Die angewendelathniken waren RBE-
DSS [7] fur Modellidentifizierung und LESFRI [5] fidie Fuzzy Inferenz. Im
Fall der beiden Modelle die resultierenden Perforcealndizes waren besser als
die jenige die zuvor veroffentlicht wurden.
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