
Proceedings of the 7 th International Conference on Applied Informatics

Eger, Hungary, January 28-31, 2007. Vol 2. pp. 63-70.

Reform of the software engineering
teaching - demands and conception

György Ferenc Tótha, Zsolt Csaba Johanyákb

aKecskemét College, GAMF Faculty, Institute of Information Technologies
e-mail:tgyferi@hetenynet.hu

bKecskemét College, GAMF Faculty, Institute of Information Technologies

e-mail:johanyak.csaba@gamf.kefo.hu

Abstract

It is a common opinion that software is expensive and inflexible. Its up-
date to the rapidly changing demands leads to inestimable expenses. More-
over the project itself or the improvements done lose validity by the time they
are finished. It happens because the development companies try to save time
and money by neglecting design and documentation. As a result they can-
not use the most up-to-date, development environment integrated Adaptive
Lifecycle Management (ALM) tools since the usage of these tools implies a
thorough design.

The current software crisis can be traced back partly to the approach of
our own-educated professionals. This paper presents our software develop-
ment teaching related experiences and a newly worked-out strategy that fits
more the real-life needs and practice of the software business.

Keywords: Software Engineering, teaching

MSC: 68N99

1. Introduction

A significant amount of software projects fail. They collapse very often like a
house of cards after receiving feed-backs from the testers. It is a widely spread opin-
ion that the failure comes from the deficiency or the total lack of software design.
Applying only the “code and fix” approach, the changes made on the half-ready
or ready software, shake the project to its grounds. Ad-hoc modifications without
careful examination and a proper change management represent a huge amount of
work and delay the project, which in many cases already failed its deadline. These
problems also can cause the abortion of the product launch, because a competitor
introduces earlier a similar product. Thus one of the main reasons of the lack of
success is that the applications are not methodically developed.

1



2

According to the feedbacks in the economy the freshly graduated programmers
do not dispose of the most up-to-date knowledge. Contrary, their solutions contain
logical flaws and inconsistencies observable even for non-professionals. Moreover
the methods and techniques of development they apply are decades behind the
“state of the art” in software engineering. For example they apply often hetero-
geneous platforms (e.g. Linux and Windows operating systems, MySQL, Oracle,
MS SQL database servers, PHP, Delphi, Java developing tools altogether) without
in-deep knowledge, instead of using strictly one well-known platform or applying a
platform-free solution.

Several times the applications are coded using tools offering only word process-
ing capabilities without automatic generation of the source code or the data base.
In lack of a proper version control system the modifications of the data structures
and program are not followed by the actualization of the plan and documentation.

Another characteristically deficiency is the lack of financial and business plan-
ning. Several programmer groups work saying “it lasts until it lasts”. The software
produced on this way - as long as it is marketable - it has an extremely short life
cycle and it is considered out of date even in the moment of its appearance on the
market.

In our opinion the roots of the problem partly can be traced back to the attitude
of the specialists trained in the higher education. What do they consider important
during their work? What do they emphasize in the software development process?
Certainly it is the coding, the topic that was the most examined skill during their
training. They consider coding the only important matter and they neglect all that
either have been not treated as important during their studies or was not part of
their curriculum.

As a result of the review of the curriculum of several higher education institutes
that are involved in teaching programming and software engineering, it can be
summarized that generally the training of programming is organized as follows.
The starting point is algorithms, followed by mastering a programming language
in two or three semesters attained in the end the grounding of the object-oriented
attitude. Software engineering knowledge is transferred in the end mostly in courses
with few contact hours. However, nowadays software development is a managed
business process, where the language of the implementation fairly often is a matter
of details and a significant part of the problem can be solved in the first phase by
applying prefabricated software components. Recognizing the actual trends and
requirements of the software industry we suggest a new approach in the software
engineering education that takes into consideration the whole software life cycle
and gives more attention to the design.

The rest of this paper is organized as follows: section 2 gives a short overview
of the teaching of application development in Kecskemét College by presenting the
objectives and aims, the syllabus and the recommended positions in the curriculum
of studies of the courses. The experiences and results are emphasized, as well.
Section 3 outlines the new approach that has been developed based on the analysis
of the assessments of students and feedback received from the labour market.



3

2. Teaching software engineering in the information

engineering branch

The students in information engineering at Kecskemét College attain the basic
programming skills in course of three semesters. In frames of the course Problem

Classes, Algorithms placed in the first semester, they go deeply into the concepts
of algorithms and they get acquainted with the related description methods. The
basics of C programming language are taught in the second semester. This course is
called Programming I. and here students get two laboratory and two lecture contact
hours a week. The evaluation of their work is continuous. In the next semester
comes the course Programming II. that also contains two hours laboratory and
two hours lecture per week. It continues the training of the C language extended
with non object-oriented elements of C++. Relevant topics are data structures,
file input-output operations, functions, dynamic memory management, etc. The
students have to take an exam at the end of the course.

The course Programming Paradigms and Techniques comes in the next semester.
Its syllabus comprehends the basics of Object-Oriented Programming (OOP) us-
ing the C++ programming language. The number of the weekly contact hours
is the same. The assessment form is continuous. The students are suggested to
register for the Comprehensive Examination in programming only after carrying
out successfully these three programming courses. However, it is not a compul-
sory precondition. Surprisingly, in each examination session some students try
their knowledge and skills before the end of the triple programming course and
some of them are lucky. It should be mentioned that the students are trained in
database management parallel with the programming courses in the second and
third semesters.

The course Programming Paradigms and Techniques is followed by the compul-
sory Visual Programming class, where the students get acquainted with the visual
application development through the use of a high level development tool (Visual
Studio 2005 Professional), which supports Rapid Application Development tech-
niques. They also learn a new object-oriented language called C#. The contact
hours are two lectures and two laboratories, as usual. In parallel with the Vi-

sual Programming appears the subject Software Engineering in form of two lecture
hours a week. This is the first time the students familiarize themselves with the dif-
ferent models and methodologies, CASE tools, as well as concepts and construction
practice of UML diagrams.

During the development of the course contents we have endeavoured to compile
knowledge and materials in such way to obtain an optimal proportion between the
general (not becoming obsolete) and the up-to-date (well applicable in the prac-
tice) information. The languages C and C++ have been chosen for the founding
training considering that the basic software and the operating systems have been
developed mostly in these languages to the present day and it does not seem to
be programming language that could take over this task. Also the C++ program-
ming language is proposed as a first language in [8] because of their multiparadigm



4

nature. Furthermore, the knowledge of the C language is also a precondition of
mastering other subjects like Operating Systems for example.

Next the .NET programming has been selected as a topic for the visual applica-
tion development. This decision was determined by the demand of our students as
well by the availability of a high level Integrated Development Environment. The
Visual Studio was available and could be checked out freely by our students before
2005 in the frames of an MSDNAA subscription and after 2005 owing to the project
Clean-Software [5] (previously called Campus) financed by the Hungarian Govern-
ment. The Java Based Development certainly is part of our training palette. This
introductory course is compulsory for the students who select the specialisation in
Network and Web Technologies and it is freely selectable for the other students in
information engineering. It has with two lecture and two laboratory contact hours
a week.

We follow the traditional and widespread programming-teaching curriculum in
our training. However, we are not as effective as we wish. In our experiences the
results of the assessments at the end of the programming and software development
courses are poorer than the results in mathematics, which subject is traditionally
considered as one of the most difficult ones. Unfortunately less than 30% of the
students pass the exam at the first attempt. Another problem is that according to
the feedback from labour market the trained professionals often do not follow that
software development methodology that the employers expect based on the needs
of the long term cost-effective development and production of standing values.

In our observation the experience of meeting the program development for the
first time is determinant for the students. At this time they are still open to all
techniques. They try in a natural way to understand, comprehend and learn the
attitude they will be later supported by during their software development activity.
Currently this determinant impression consists of an implementation practice where
the instructor presents the specification briefly, which cannot be understandable
or obscure for some students, and next students try to code the program rapidly
without any design work or examination of the problem. Sometimes their approach
can be traced back either to the small scale of the problem or to the fact that the
problem seems to have a known solution.

It frequently occurs that the students do not think ahead, they decide from line
to line what mathematical equation to apply, what to organize inside or outside
of an iteration, whether selection statements are necessary or not. Studying the
examples treated on programming laboratories and the solutions of the assignments
made by the students it easily can be observed that they do not look like a source
code developed systematically in the competitive sphere. We should admit that
sometimes even the tutorial examples prepared by the teachers contain only the
explications of the new functions and solution types. Due to the complete absence of
documentation the students would not even be able to test the programs developed
by their fellows. In the best possible case the name of the author appears in the
source code but there is no description of the task and the objective of the software.
Usually the subroutines are not preceded by the design and the annotation of the



5

variables. One can not understand how the output comes from the input, which
makes difficult to control or test the program or even the subroutines.

Surprisingly we have recognized on several occasions that students memorize
two or three programs before the examination. In course of the examination if there
is a minimal coincidence between the actual assignment and one of these programs,
they reproduce the memorized one without any minimal effort for the adaptation.
Moreover, from time to time the supervisors observe that there are students who
use photocopies of programs as cheat sheets in miniaturized form and folded into
concertina.

The implementation phase in software development is not other than the con-
version of the system specification into an application that can be run [1]. Thus
application development cannot exist without system specification. We also made
specifications in the traditional programming teaching. We called it problem defi-
nition or problem specification and we used our mother tongue (a human language)
for its description.

However, this approach has its serious limitations. The specifications easily
can be misunderstood; they depend on the way of thinking and conception of the
person who is defining them. One can not speak about a standard. Thus students
are inclined to think that the system-design is an obscure description that is full
of subjective concepts and based on it they can code anything they feel right or
anything that they can understand from it.

Therefore it is not a surprising fact that most of our students do not read the
problem specification even during their exams. They begin the implementation af-
ter reading a few sentences from the specification. Practically there is no endeavour
to establish the structure of the software first outgoing from the description and
next to develop the program based on it. In all the cases the students appreciate
their software as perfect if it conforms to the requirement specification although
none of the traces of the originally documented and required specification can be
identified in it.

On the other hand the software development is going on in the competitive sec-
tor conform to a very strict system-design, not to mention the coding conventions,
which most of the students face for the first time at their workplace. In our opinion
the traditional programming education has another serious drawback. It does not
prepare the students for team-work, for the fact that in the software industry the
applications are not developed by individuals and in arbitrary mode, but several
people work on a project. In practice the preparation of standard system-designs,
their understanding and the implementation of the programs based on them will
be overall important.

All the enumerated problems can be traced back to the fact that we teach a
programming language and not software engineering. We should recognize that our
unsaid, latent primary objective was to make the students understand the language
elements and to make them exercise the methods being typical of the language.
Moreover the instructors also prepared their syllabus and examples based on this
approach. Another difficulty arises as a consequence of the reforms regarding the



6

number of the contact hours, namely the available time is hardly enough for teach-
ing the basic elements of a programming language. Therefore the less conspicuous
topics are omitted in the teaching practice, namely the design and testing that can
run up to 80% of the life-time of a software project in the competitive sphere.

Based on the results and the feedback (e.g. [2]) we have drawn the conclu-
sion that we should rebuild the teaching of software engineering at our college.
The emphasized topic is changed in the new approach and besides the teaching
methodology is also modified in order to reach a better fitting to the logical steps
of the software development. We want to train our students not only to be able to
develop software as isolated individuals but also to be good team-players.

3. New approaches in the teaching of the application

development

We prepare a change in our approach regarding to programming and software
development training. We want to superimpose system design and its interpretation
to the implementation and we want to subordinate individual work to team-work
in order to provide our students with more competitive knowledge, experience and
skills. Besides an important objective for us from the very first moment is the
development of object-oriented perspective. In our opinion we should not start
the programming teaching in the traditional style, because the methodology used
is considered nowadays outdated, so it should not be followed if we continue the
training of software development on Object-Oriented (OO) foundations later.

In our conception students get acquainted with the theoretical and practical
aspects as well as the description methods of algorithms in the frames of the course
Problem Classes and Algorithms. In line with it we introduce our new ideas in a
subject called Software Engineering. Its contact hours will be two laboratories per
week. The content of this course does not contain any coding and implementation
parts yet. The students build Domain Models of well known subjects (e.g. the
structure and the functioning of a school, a library, a kitchen, a confectionery, a
newspaper stall, etc.). As a first step they prepare domain diagrams. Next begins
the OO based software design, where further class and object diagrams are prepared
and grouped based on the domain diagrams.

The implementation in C++ starts in the second semester in course of the
subject Programming I. At this time the students either design all problems in
advance in an OO way or they receive the designs from the instructor. The applied
UML diagrams can be rather simple ones because the students should be able to
implement them at the given competence level. The students also learn data access
and database management parallel with Programming I. The relational data model
also can be elaborated using OO design methods. For example the heading of an
invoice and the items can be viewed as objects and their connections can appear
in a relational database, too. This approach fortifies further their OO outlook and
its applicability.



7

The course Programming II. is placed in the third semester. It introduces the
file management and file input output operations, the memory management as well
as the lists as main topics. The students develop applications built up from several
source code files. Based on an OO system design it is possible to divide the task
into several parts that can be worked out by different students. We could set a
time limit to exercise a little pressure on them similar to the life in the competitive
sphere and to lead them into temptation of omitting the design and documentation
phases that seem to the beginners to be useless.

In case of long term projects the assignments can be hardened as follows. From
time to time it could be worthy to reorganize the teams in order to simulate the
real life workplace situations, where due to the standing fluctuation of labour it
very often occurs that a project is not finished by the same people it was started by.
It also might be feasible to change the projects between the teams. It could be the
best evaluation form of the design and documentation of a software project. The
team members would face immediately the additional work necessary due to the
lack of proper documentation and design. Moreover they would recognize that the
time spent on the systematically approach from the very beginning of the project
returns quickly.

The students get acquainted with the OO Programming (OOP) in the frames
of the course Programming Paradigms and Techniques. The C++ language is used
for this purpose, and the team-work based practical training is also applicable.
The grading of the students will be determined by the evaluation of the assignment
made by the team. The tasks should be distributed by the team members among
themselves in a documented way, and they receive the system design from the
teacher. We suggest the registration for the Comprehensive Examination in pro-
gramming only after completing this subject successfully. During the exam each
student works on her/his own. The assignment consists of implementing a pre-
designed application in a period of 90 minutes. The course Visual Programming
follows the Comprehensive Examination. In its frames the students learn the visual
application development through mastering the language C# and by using Visual
Studio 2005 Professional. This subject touches how an Integrated Development
Environment (IDE) supports the development of large scale software projects as
well as the documentation. We plan the application of the Visual Studio Team
System Server for the support of the team-work training.

4. Conclusions

The analysis of the reasons of current software crisis, the feedbacks received
from the software business and our own experiences led us to the recognition that
our teaching approach no more satisfies the demands of the software industry.
After a deep examination of our curriculum and the typical deficiencies of the fresh
graduated professionals we have found that main problematic points are the lack
of proper design and documentation as well as the failing team work skills.

For this reason we decided to develop new concepts regarding to the software



8

engineering curriculum based on the results of the investigations. Thus now we
emphasize more than previously mastering of modeling, design and team-work skills
in our objectives. Besides, we seek new student evaluation models and methods
that better fit the project- and team-centered teaching approach, ensuring the
most fairly individual grading. Our new experimental team based student work
evaluation system, which takes into consideration peer ratings as well, will be
introduced in the next academic year.

References

[1] Sommerville, I., Software Engineering, 7th Edition, Pearson Education, (2004)

[2] Szabolcsi, J., A standard C++ és az MFC-osztály alapú vizuális programozás ok-
tatásának tapasztalatai Visual C++ 6.0-s fejlesztőkörnyezetben, Főiskolák Matem-

atika, Fizika és Számítástechnika Oktatóinak XVIII. Országos Konferenciája, Nyíre-
gyháza, 25-27. Aug (2004)

[3] Teleki, S., A practical approach to predictable software development performance in
small to medium size software development organizations, Engineering Management

Conference, 2004 IEEE/UT, 12-13 Aug. (2004), 70–72.

[4] Stevens, K. T., Experiences teaching software engineering for the first time, Annual

Joint Conference Integrating Technology into Computer Science Education, Canter-
bury, United Kingdom, (2001), 77–80.

[5] Tisztaszoftver Program, http://www.tisztaszoftver.hu

[6] Jones, C., Patterns of Software Systems Failure and Success, International Thomp-
son Computer Press, Boston, Mass., (1996)

[7] Sertic, H., Filjar, R., Pozgaj, Z., Efficient software development organisation
based on unified process, Electronics in Marine 46th International Symposium, 16-18
June, Zadar, Croatia, (2004), 390–395.

[8] Porkoláb, Z., Zsók, V., Teaching Multiparadigm Programming Based on Object-
Oriented Programming, 10th Workshop on Pedagogies and Tools for the Teaching and

Learning of Object-Oriented Concepts, TLOOC Workshop, ECOOP 2006, Nantes,
2006, avalable at: http://www.cs.umu.se/ jubo/Meetings/ECOOP06/Submissions/7-
Porkolab.pdf

György Ferenc Tóth

Izsáki út 10, H-6000 Kecskemét, Hungary

Zsolt Csaba Johanyák

Izsáki út 10, H-6000 Kecskemét, Hungary


