
Tóth, Gy. F., Johanyák, Zs. Cs.: Teaching software engineering – Experiences and new
Approaches, XIX Didmattech 2006, September 6—7, Komarno, Slovakia ,
ISBN 978-80-89234-23-3 , pp. 261-265.

TEACHING SOFTWARE ENGINEERING – EXPERIENCES AND

NEW APPROACHES

TÓTH György Ferenc, HU – JOHANYÁK Zsolt Csaba, HU

Resume International statistics show that more than a half of the software projects fail
before any user could try the product. The general opinion is that the fiasco can be
traced back to the lack of proper design work. It is a sign that made us to meditate on
our teaching and curriculum developing practice. This paper intends to present our
experience and a new strategy aiming a better training of our students for real-world
software engineering tasks.

Keywords: software engineering curriculum

1 Introduction

According to international statistics more than a half of the software projects fail
before any user could try the product. A widely held view is that the fiasco rises from
the shortcomings or even from the lack of the design. Our opinion is that the roots of the
problem partly can be traced back to the attitude of the specialists trained in the higher
education. What do they consider important during their work? What do they emphasize
in the software development process? Certainly the coding, the topic that was the most
examined skill during their training. They consider coding the only important matter
and they neglect all that either have been not treated as important during their studies or
was not part of their curriculum.

As a result of the review of the curriculum of several higher education institutes
that are involved in teaching programming and software engineering it can be
summarized that generally the training of programming is organized as follows. The
starting point is algorithms, followed by mastering a programming language in two or
three semesters attained in the end to the grounding and implementations of the object-
oriented attitude. Software engineering knowledge is transferred in the end mostly in
courses with few contact hours. However, nowadays software development is a
managed business process, where the language of the implementation fairly often is a
matter of details and a significant part of the problem can be solved in the first phase by
applying prefabricated software components.

The rest of this paper is organized as follows: section 2 gives a short overview of
the training of application development in Kecskemét College by presenting the
objectives and aims, the syllabus and the recommended positions in the curriculum of
studies of the course-units. The experiences and results are emphasized, as well. Section
3 outlines a new approach that has been developed based on the analysis of the
assessments of students and feedback received from the labour market.

2 Teaching software engineering in the information engineering branch

The students of Kecskemét College attain the basic programming skills in the
information engineering branch in three semesters. In course of the unit Problem

Classes, Algorithms placed in the first semester, they go deeply into the concepts of
algorithms and they get acquainted with the related description methods. The basics of

Tóth, Gy. F., Johanyák, Zs. Cs.: Teaching software engineering – Experiences and new
Approaches, XIX Didmattech 2006, September 6—7, Komarno, Slovakia ,
ISBN 978-80-89234-23-3 , pp. 261-265.

C programming language are taught during the second semester. This unit is called
Programming I. and students get two laboratory and two lecture contact hours a week.
The evaluation of their work is continuous. In the next semester comes the course unit
Programming II. that also contains two hours laboratory and two hours lecture per
week. It continues the training of the C language extended with non object-oriented
elements of C++. Relevant topics are data structures, file input-output operations,
functions, dynamic memory management, etc. The students have to take an exam at the
end of the course. The unit Programming Paradigms and Techniques comes in the next
semester. Its syllabus comprehends the basics of Object-Oriented Programming (OOP)
using the C++ programming language. The number of the weekly contact hours is the
same. The assessment form is continuous. The students are suggested to register for the
Comprehensive Examination in programming only after carrying out successfully these
three programming courses. However, it is not a compulsory precondition. Surprisingly,
in each examination session some students can be found trying their knowledge and
skills before the end of the triple programming course and some of them are lucky. It
should be mentioned that the students are trained in database management parallel with
the programming courses in the second and third semesters.

The unit Programming Paradigms and Techniques is followed by the
compulsory Visual Programming class. The students get acquainted in its frames with
the visual application development through the use of a high level development tool
(Visual Studio 2005 Professional), which supports Rapid Application Development
techniques. They also learn a new object-oriented language called C#. The contact hours
are two lectures and two laboratories, as usual. In parallel with the VP appears the
subject Software engineering in form of two lecture hours a week. This is the first time
the students familiarize themselves with the different models and methodologies, CASE
tools, as well as concepts and construction practice of UML diagrams.

During the development the syllabus for the course units we have endeavoured
to compile knowledge and materials in such way to obtain an optimal proportion
between the general (not becoming obsolete) and the up to date (well applicable in the
practice) information. The languages C and C++ have been chosen for the founding
training considering that the basic software and the operating systems have been
developed mostly in these languages to the present day and it does not seem to be
programming language that could take over this task. The .Net programming has been
selected as a topic for the visual application development. This decision was determined
by the demand of our students as well by the availability of a high level Integrated
Development Environment. The Visual Studio was available and could be checked out
freely by our students before 2005 in the frames of an MSDNAA subscription and after
2005 owing to the project Clean-Software [1] (previously called Campus) financed by
the Hungarian Government. The Java Based Development certainly is part of our
training palette. This introductory course-unit is compulsory for the students who select
the specialisation in Network and Web Technologies and it is freely selectable for the
other students of the information engineering branch with two lecture and two
laboratory contact hours a week.

We follow the traditional and widespread programming-teaching curriculum in
our training. However, we are not as effective as we wish. The experiences show that
the results of the assessments of the programming and software-development courses
are poorer than the results in mathematics, which subject is traditionally considered as
one of the most difficult ones. Less than thirty percent of the students complete their

Tóth, Gy. F., Johanyák, Zs. Cs.: Teaching software engineering – Experiences and new
Approaches, XIX Didmattech 2006, September 6—7, Komarno, Slovakia ,
ISBN 978-80-89234-23-3 , pp. 261-265.

courses successfully. Another problem is that according to the feedback of the labour
market the trained professionals do not frequently follow that software development
methodology that the employers expect based on the needs of the long term cost-
effective development and production of standing values. Sometimes the approach of
the young professionals can be considered hurry-scurry rather than systematic.
Undoubtedly there are some elements in our curriculum that could be misleading for
students being not enough engrossed in the subject. As a very simple example could be
mentioned the instruction of some techniques (e.g. the use of global variable) without
which starting teaching a programming language would be too complicated. However,
later their use is forbidden and we try to break the students’ habit of applying them.

In our observation it is determinant for the students the experience of meeting
the program development for the first time. At this time they are still open to all
techniques. They try in a natural way to understand, comprehend and learn the attitude
they will be later supported by during their software development activity. Currently
this determinant impression consists of an implementation practice where the instructor
presents the specification briefly, which cannot be understandable or obscure for some
students, and next students try to code the program rapidly without any design work or
examination of the problem. Sometimes their approach can be traced back either to the
small scale of the problem or to the fact that the problem seems to have a known
solution. It frequently occurs that the students do not think ahead, they decide from line
to line what mathematical equation to apply, what to organize inside or outside of an
iteration, if selection statements are necessary or not. Studying the examples treated on
programming laboratories and the solutions of the assignments made by the students it
easily can be observed that they do not look like a source code developed systematically
in the competitive sphere. We should admit that sometimes even the tutorial examples
prepared by the teachers contain only the explications of the new functions and solution
types. Due to the complete absence of documentation the students would not even be
able to test the programs developed by their fellows. In the best possible case the name
of the author appears in the source code but there is no description of the task and the
objective of the software. Usually the subroutines are not preceded by the design and
the annotation of the variables. One can not understand how the output comes from the
input, which makes difficult to control or test the program or even the subroutines.

All the enumerated problems can be traced back to the fact that we teach a
programming language and not software engineering. We should recognize that our
unsaid, latent primary objective was to make the students understand the language
elements and to make them exercise the methods being typical of the language.
Moreover the instructors also prepared their syllabus and examples based on this
approach. Another difficulty arises as a consequence of the reforms regarding the
number of the contact hours, namely the available time is hardly enough for teaching
the basic elements of a programming language. Therefore the less conspicuous topics
are omitted in the teaching practice, namely the design and testing that can run up to
80% of the life-time of a software project in the competitive sphere.

Based on the results and the feedback (e.g. [3]) we have drawn the conclusion
that we should rebuild the training of programming and software development in our
college. The emphasized topics are changed in the new approach and besides the
teaching methodology is also modified in order to reach a better fitting to the logical
steps of the software development.

Tóth, Gy. F., Johanyák, Zs. Cs.: Teaching software engineering – Experiences and new
Approaches, XIX Didmattech 2006, September 6—7, Komarno, Slovakia ,
ISBN 978-80-89234-23-3 , pp. 261-265.

The implementation phase of the software development is not other than the
conversion of the system specification into a system that can be run [2]. Thus
application development can not exist without system specification, although we also
make specifications in the traditional programming teaching. We call it problem
definition or problem specification and we use our mother tongue (a human language)
for its description. However, this approach has its serious limitations. The specifications
easily can be misunderstood; they depend on the way of thinking and conception of the
person who is defining them. One can not speak about a standard. Thus students are
inclined to think that the system-design is an obscure description that is full with
subjective concepts and based on it they can code anything they feel right or anything
that they can understand from it. Therefore it is not a surprising fact that most of our
students do not read the problem specification even during their exams. They begin the
implementation after reading a few sentences from the specification. Practically there is
no endeavour to establish the structure of the software first outgoing from the
description and next to develop the program based on it. In all the cases the students
appreciate their software as perfect if it conforms to the requirement specification
although none of the traces of the originally documented and required specification can
be identified in it. On the other hand the software development is going on in the
competitive sector conform to a very strict system-design, not to mention the coding
conventions, which most of the students face for the first time at their workplace.

In our opinion the traditional programming education has another serious
drawback. It does not prepare the students for team-work, for the fact that in the
software industry the applications are not developed by individuals and in arbitrary
mode, but several people work on a project. In practice the preparation of standard
system-designs, their understanding and the implementation of the programs based on
them will be overall important. Unfortunately most of our students have no idea about
the software development in teams, because our training system is based on the
individual performance, only this skill is assessed during the studies. In the competitive
sphere nowadays the one-person projects have no chance against the software projects
developed systematically in team-work by larger software companies. Exactly for that
reason we have decided to modify the teaching of programming in our college with an
experimental character. We want to train our students not only to be able to develop
software as isolated individuals but also to be good team-players.

3 New approaches in the teaching of the application development

We prepare a change in our approach regarding to programming and software
development training. We want to superimpose system design and its interpretation to
the implementation and we want to subordinate individual work to team-work in order
to provide our students with more competitive knowledge, experience and skills.
Besides an important objective for us from the very first moment is the development of
object-oriented perspective. In our opinion we should not start the programming
teaching in the traditional style, because the methodology used is considered nowadays
outdated, so it should not be followed if we continue the training of software
development on object-oriented foundations later.

In our conception students get acquainted with the theoretical and practical
aspects as well as the description methods of algorithms in the frames of the course-unit
Problem Classes and Algorithms. In line with it we introduce our new ideas in a subject

Tóth, Gy. F., Johanyák, Zs. Cs.: Teaching software engineering – Experiences and new
Approaches, XIX Didmattech 2006, September 6—7, Komarno, Slovakia ,
ISBN 978-80-89234-23-3 , pp. 261-265.

called Software Engineering. Its contact hours will be two laboratories per week. The
syllabus of this unit does not contain any coding and implementation parts yet. The
students build Domain Models of well known subjects (e.g. the structure and the
functioning of a school, a library, a kitchen, a confectionery, a newspaper stall, etc.). As
a first step they prepare domain diagrams. The point of these diagrams is that in practice
they are prepared by specialists, who are expert in that field of interest, helped by
professionals in information engineering. Using these diagrams they can describe both
the properties and the functioning of the objects belonging to the system that is
unknown for the software developers. It is called business process modeling. These
description tools and methods perfectly fit the needs of the inexperienced information
engineering students in order to develop their OO view. Next begins the OO based
software design, where further class and object diagrams should be prepared and
grouped based on the previously elaborated domain diagrams.

The implementation in C++ starts in the second semester in course of the subject
Programming I. At this time the students either design all problems in advance in an
OO way or they receive the designs from the instructor. The applied UML diagrams can
be rather simple ones because the students should be able to implement them at the
given competence level. The students also learn data access and database management
in line with Programming I. The relational data model also can be elaborated using OO
design methods. For example the heading of an invoice and the items can be viewed as
objects and their connections can appear in a relational database, too. This approach
fortifies further their OO outlook and its applicability.

The course unit Programming II. is placed in the third semester. It introduces the
file management and file input output operations, the memory management as well as
the lists as main topics. The students develop applications built up from several source
code files. Based on an OO system design it is possible to divide the task into several
parts that can be worked out by different students. We could fix a term to exercise a
little pressure on them similar to the life in the competitive sphere and to lead them into
temptation of omitting the design and documentation phases that seem to the beginners
to be useless. In case of long term projects the assignments can be hardened as follows.
From time to time it could be worthy to reorganize the teams in order to simulate the
real life workplace situations, where due to the standing fluctuation of labour it very
often occurs that a project is not finished by the same people it was started by. It also
might be feasible to change the projects between the teams. It could be the best
evaluation form of the design and documentation of a software project. The team
members would face immediately the additional work necessary due to the lack of
proper documentation and design. Moreover they would recognize that the time spent
on the systematical approach from the very beginning of the project returns quickly.

The students get acquainted with the OOP in the frames of the course unit
Programming Paradigms and Techniques. The C++ language is used for this purpose,
and the team-work based practical training is also applicable. The mark of the students
will be determined by the evaluation of the assignment made by the team. The tasks
should be distributed by the team members among themselves in a documented way,
and they receive the system design from the teacher. We suggest the registration for the
Comprehensive Examination in programming only after completing this subject
successfully. During the exam each student works on their own. The assignment is the
implementation of a pre-designed application in a period of 90 minutes. The course unit
Visual Programming follows the Comprehensive examination. In its frames the students

Tóth, Gy. F., Johanyák, Zs. Cs.: Teaching software engineering – Experiences and new
Approaches, XIX Didmattech 2006, September 6—7, Komarno, Slovakia ,
ISBN 978-80-89234-23-3 , pp. 261-265.

learn the visual application development through mastering the language C# using
Visual Studio 2005 Professional. This subject touches how the integrated development
environment supports the development of large scale software projects as well as the
documentation. We plan the application of the Visual Studio Team System Server for
the support of the team-work training.

Conclusions

In our conception in the education of the information engineering students one
should break away from the traditional teaching and evaluation forms. The world of
software development is in many respects beyond these techniques. As a consequence
one should search for and adapt approaches that ensure a better correspondence of our
students to the requirements of the competitive sphere. We prepare not only for a
change in our view but we also must introduce new didactical methods in order to
simulate the real processes in the software industry. The latter aims to support the
selection and teaching of the right software development methodology. The new
approach is in conflict in some points with the generally accepted student evaluation
system. There are some open questions, so we still search for the optimal answers, for
example how to asses the individual performance in case of a team-work. We have to
evaluate each student with marks in a most possible fair way. We have developed a
team-work evaluation system that will be introduced in the next academic year.

References

1. Tisztaszoftver Program, http://www.tisztaszoftver.hu
2. Ian Sommerville, Szoftverrendszerek fejlesztése, Budapest: PANEM, 2002, s.85.

ISBN 963 545 311 6
3. Szabolcsi Judit: A standard C++ és az MFC-osztály alapú vizuális programozás

oktatásának tapasztalatai Visual C++ 6.0-s fejlesztőkörnyezetben, Főiskolák
Matematika, Fizika és Számítástechnika Oktatóinak XVIII. Országos
Konferenciája, Nyíregyháza, 2004. augusztus 25-27.

Reviewed by: Steven Teleki, Director, Software Development, Webify Solutions, Inc.,
Austin, USA

Authors:

György Ferenc Tóth, Senior Lecturer,
Department of Information Technology, Kecskemét College,
H-6044 Kecskemét-Hetényegyháza, Belsőnyír 326/3., mob: +36 20 9123-914,
e-mail: tgyferi@hetenynet.hu

Zsolt Csaba Johanyák, Senior Lecturer,
Department of Information Technology, Kecskemét College,
H-6000 Kecskemét, Hungary, Izsáki út 10., tel. +36 76 516 413,
e-mail johanyak.csaba@gamf.kefo.hu
web: http://www.johanyak.hu

