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Incremental Fuzzy Rule Base Extension with
Optimization®

Johanyak, Zsolt Csaba — Kéhazi-Kis, Ambrué

A sparse fuzzy rule base offers low complexity émd memory demand for a
fuzzy system. Its automatic generation from sangaéa involves two main
tasks, i.e. the structure definition and the patamiglentification. In this paper,
we present a novel approach that starts with tdesrand incrementally creates
new rules followed by the identification of themnpameters using a direct search
method.

1 Introduction

One of the key steps in fuzzy model identificatienthe creation of the rule
base. In several cases there is no human knowtadgeould be incorporated in
form of predefined linguistic terms and fuzzy rul@herefore the model is
generated automatically from sample data. Mosthefknown methods create
dense rule bases, which can lead to a rule numi@oson in case of high
number of dimensions and high number of sets/diroans

The RBE-DLS (rule base extension with direct losahrch) method ensures a
trade-off between the demand on approximation dhifyabf the fuzzy system
and the demand on low complexity of the rule basgdnerating a sparse rule
base. It follows the concept of rule base extendifnand identifies the
parameters of the fuzzy system using a direct Iseatch method.

The rest of this paper is organized as followstiBeB@ presents the applicable
membership function parameterization approachegidde3 introduces the new
method after reviewing the concepts of sparsebates and rule base extension.
Section 4 presents some experimental results aggpliRBE-DLS and the
conclusions are drawn in section 5.
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2 Parameterization

Each membership function can be described by alenal larger number of
parameters depending on the shape type. The piseelimear membership
functions can be described easily by the positibnthe break-points. For
example in case of a singleton the parameter ielkment of the universe of
discourse whose membership value is greater than aein case of a triangle
shaped normal fuzzy set (e.g. fig. 1) the parameter the abscissa values of the
three vertices

Fig. 1 Parameterization of a triangle shaped meshij@function

The number of the parameters determines the nuaibariables whose values
are changed in course of the fuzzy model identifica which has a strong
effect on the time need of the process. In sevasés one might use uniform
shaped fuzzy sets in order to reduce the time dénEmus only one parameter
has to be adjusted in case of each linguistic t@ims parameter is the position
of the set described by the reference point. Usliailces for this task are (fig. 2)
abscissa values corresponding to the centre afdteRPcc, e.g. [1][3][6]), the
centre of gravityRPsc, €.9.[5]) and the centre of the supp&P{¢, e.g. [3]).
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Fig. 2 Usual reference point types
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Although the application of the uniform shaped setsluce the time
consumption of the tuning and preserves the gotatgretability of the fuzzy
rules it also can have a negative side effect byagimg the performance of he
fuzzy system (see section 3.5 on details aboupémormance measurement).
Thus the selection of the parameterization is adet@f between the
performance of the system and the cost of the mddatification.

3 Model identification from numerical sample data

Fuzzy model identification usually consists of fbbowing two steps.

1. Data preprocessing that could include the ideumtiiicn of the input and
output linguistic variables, determination of thmwver or upper bounds of
each dimension of the input and output universeslistourse, statistical
analysis of the data regarding the relevance ofrthet variables excluding
the non relevant ones in order to reduce the coritplef the system.

2. Rule base generation that includes the definitibrthe input and output
partitions as well as the extraction of the rulesnf the sample data. In
course of the rule base generation one can foleavdifferent approaches.
The first one divides the task in two separate sstépe. the structure
definition and the parameter identification (e.ged®p, Doboli and Preitl
[16]; or Botzheim, Hamori and Koéczy [2], or Skrjan®lazi and
Agamennoni [19]).

The second approach works incrementally by simattasly modifying the

structure and the parameters, i.e. introducingventially eliminating rules

and tuning the parameters of the membership fumgt{ie.g. Johanyak and
Kovéacs [7]). This approach also can be appliedasecof adaptive fuzzy
systems (e.g. Vaék, and L. Madaréasz [21])

The method being presented in sections 3.3 andddrs the second step and
follows the second approach.
3.1 Sparse rule base

The rule base of a fuzzy system is categorizedemsed (covering) or sparse
(non-covering) depending on the coverage of thetispace by rules, which is

defined by the formula
c= argm€a><mini“il{ max’j‘:l{ t(A,j : A)} }2 g, )
DA’ D X,) £0[0,1],

where X, is theith dimension of the antecedent spaéé, is the fuzzy set
describing the observation in tite antecedent dimensiod; is thejth linguistic
term of theith antecedent dimensionis an arbitrary t-nornm; is the number of
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the linguistic terms of théth antecedent dimensioll is the number of the
antecedent dimensions, amldgmax(.) calculates thes value for which the
expression in the parentheses takes its maximuox. df the rule base is called
€ covering (dense) otherwise it is considered sparse

g 0.5 X,

Fig. 3 Sparse antecedent space

If there is no demand on ar0 value the rule base is considered sparse when
there is at least one possible input value for tithe rule base does not contain
an applicable rule.

3.2 Fuzzy inference in sparse rule bases

Fuzzy systems applying sparse rule bases haveetapgsroximate inference
techniques that can cope with the lack on rulesame regions of the input
space. For this task the most used techniquesharéuzzy rule interpolation
based ones. They form two main groups based okethaleas they are using.

The members of the first group, the so called dep-snethods determine the
conclusion directly from the observation takingoimonsideration two or more
existent rules of the rule base. The methods KH, [BOVE [10], IMUL [22],
IRG [3], and Kovacs’s method [9] belong to thisezry.

The members of the second group first produce arnénn the position of the
observation using rule interpolation and next, tdetermine the conclusion by
firing the interpolated rule. Here belong for exdeniihe methods GM [1], IGRV
[5], LESFRI [6], as well as Chen and Ko’'s methofl [4

3.3 RBE-DLS

The rule base extension using direct local seadRBE(DLS) method aims the
generation of a fuzzy rule base from numerical dardpta. The data consist of
known input and output value pairs. The input coub® one- or

multidimensional, while the output has to be omaehsional. In case of a
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multidimensional output a separate rule base cageerated for each output
dimension.

The basic idea of the Rule Base Extension (RBEha$ one creates first an
initial rule base and next, one starts an iterativeng process when beside the
adjustment of the values of the known sets’ parareatew linguistic terms and
rules are introduced into the rule base.

The initial rule base contains only two rules, describing a maximum point of
the output and one describing a minimum point efdhtput. First one seeks the
two extreme output values and a representative izEtda for each of them. If
several data points correspond to an extreme value,should select the one
that is closer to an endpoint of the input domain.

The reference points of the antecedent sets dfrterule will be identical with
the corresponding input values of the minimum paiie reference point of the
consequent set will be identical with the outputigeof the minimum point. The
shape of the linguistic terms is determined bydh&ult set shape, which is a
characteristic feature of the partition. The antlecs and consequent linguistic
terms of the second rule are determined in a simiay taking into
consideration the maximum point. At this point tegstem contains two
linguistic terms in each dimension.

Having the first two rules determined, next a patanidentification process is
started, which iteratively adjusts the values @& flinguistic terms’ parameters.
The details of the applied algorithm are preseritethe next section. If the
improvement velocity of the fuzzy systems’ perfonoa index falls below a
specified threshold or even stops after an itematirle a new rule is generated.
It is because the system tuning reached a locamaopt of the performance
indicator and the performance cannot improve furthethe applied parameter
identification algorithm. The new rule introducedddional tuning possibilities.
However, in some cases the performance will detstiéotemporarily after the
insertion of the new rule into the rule base.

In order to create the new rule, one seeks foc#heulated data point, which is
the most differing one from its corresponding tiagn point. The input and
output values of this training point will be thdeence points of the antecedent
and consequent sets of the new rule. The shapthe afew linguistic terms are
determined using the default shape types of theesponding partition.

Further on, the last two steps (parameter adjudtaret new rule creation) are
repeated until the specified iteration number hesnbreached, or the value of
performance index overcomes a prescribed threshold.
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3.4 Parameter identification using a direct searcimethod

The aim of the parameter identification procesgoismprove the model by

optimizing its performance evaluated by the soechtherit function. In case of
fuzzy systems’ optimization the merit function Isaacalled performance index
(see section 3.5 for its definition). Owing to thenalalytic behaviour of the

merit function one can use effectively only so @allirect search methods for
optimization.

The best known direct serch method is a so calfaglex method invented by
Nelder and Mead in 1965 [15] [18]. It is a veryezffive method in case of a lot
of problems having low number of dimensions. Mvidely used even nowadays
although this method sometimes fails to find thealooptimum also for well

behaving (two times continuously differentiablendtions [14]. One of the

authors tested this algorithm for different dimensil analytic problems of
highly reflecting dielectric mirror design [11] stiag from a randomly chosen
point in the parameter space. This method provduktstatistically stable up to
approximately 6-8 dimensions. In higher dimensitites method of Nelder and
Mead characteristically loses its way to the lamatima. That is this method is
not expected to solve our problem in the paramgpace with dimension of
significantly higher number than 6-8.

Recently direct search methods have been integsimekstigated (e.g. in [8])
also in mathematical analysis. A well defined clebslirect search algorithms
has been identified [8] that can be proved to bevement for maximization
problems with orderly merit functions (that is aas$t two times differentiable).
The generalized algorithm is called Generating Sedrch (GSS) method. It
must fulfill some conditions for the sake of corpemce but there are plenty of
features which are freely variable for optimizitg tspeed of the convergence of
the algorithm [8].

We developed a GSS search code in which optiorbeatory moves are used
to fasten the convergence of the algorithm [11][TH e convergence of the
algorithm is guaranteed by the search on a minipwditive base whose
elements form a regular simplex. The elements i positive base can be
obtained by the following recursive formula (fbf = 2,3,...):

1 0 .. 0
1
_(1 .| N 2 _
A—[_J A (\/N 1AN_1] @)
_1 N
N

The algorithm can be described as follows:
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Initialization.

Let f :RY = R given.

Let x, JR" be the initial guess.

Let A, >0 be the step-length convergence tolerance.
LetA, >A

Let G be a positive base, a grenerating set R given by the recursive
formula of eq. (2). (In this case the lower bouridh® cosine measure of the
generating setK(G) =1/N))

Algorithm. For each iteration k=0, 1, 2, 3...

be the initial value of the step-length controtgraeter.

tol

Step 1. Let G, ={Ak d|d DG} be the set of trial steps, and
H, :{§< +A, d| d DG} be the set of explanatory moves. Hegeis a last
successful steps, = X, — X,_, . (buts; =0)

Step 2lf there existed, OJH, such thatf (xk + dk)< f (xk) than set

- SetX,,, = X, +d, (change the iterate).

- If 5, >12A, than seth, ,, =2A, .

Step 3.Otherwise (nowf (x, +d, )= f(x,) forall d, OH,)

Let dy e O H . Such thatf (x,dy e )2 (¥, dy ) for all d, OH, .

If (X = dy ) < (¥, ) than

- SetX,,; = X, —dy nax (Change the iterate),

- If s, >12A, than seth,,, =24, .

Step 4 Otherwise if there existd, 0G, such thatf (x, +d,)< f(x) than

- SetX,,, = X, +d, (change the iterate) and se, =d, .

Step 5.0therwise
Let dy max DGy SuUch thatf (x, dy ma )= f (x,cd,) for all d, OG, .

If £ (X = dy ) < (%) than
- SetX,,; = X, —d, max (Change the iterate) and ssf = —d, .. -

Step 6.0therwise do the following:
- Setx,,; =X, (no change the iterate).

- SetA,,, =05A, (contract the step-length control parameter).
-If A, <A, then terminate.
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This algorithm has been implemented in C++ and MABL and it was
successfully tested on different problems (e.g] §id [12]).

3.5 Performance index

The performance index expresses the quality ofaftiroximation ensured by
the fuzzy system using a number that aggregatessealdates the differences
between the prescribed output values and the owtplues calculated by the
fuzzy system. One can choose from several posgbkléormance indices

available in the literature (e.g. in [17]). We udghe@ root mean square of the
error (RMSE) as performance index owing to its geodhprehensibility. and

comparability to the range of the output linguistégiable. Its value is calculated
by

: (3)
whereM is the number of training data pointg, is the output of th¢" data

point and 9j is the output calculated by the system.

4 Experimental results

For testing purposes we considered first a nonlinee-dimensional function
presented in fig. 4 and we applied the LESFRI fuirdgrence technique. The
sample data contained 101 uniformly distributedadatints whose abscissa
values were in the interval [0,10]. The sample deda split randomly into two
sets, one containing 68 data points for trainingppses and one containing 33
data points for testing purposes. In order to awba overfitting of the fuzzy
system to the training data points we also evatliatecourse of the parameter
optimization the performance of the fuzzy systemigt the testing data.

Finally, we selected that parameter tuple whichuesd a quasi optimal
performance in case of the testing data as wellsThe resulting fuzzy system
contained 5 rules, and the value of the performamaex was RMSE=0.0967 in
case of the testing data and RMSE=0.0771 in caeedésting data.
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Fig. 5 Two-dimensional test function

Next, we used a two-dimensional nonlinear test tioncpresented in fig. 5.
Applying the above described considerations in ttése the training data
sample contained 130 data points and the testitags#anple contained 65 data
points. The final parameter tuple was selected dbase the same trade-off
between the performance of the system againstaimdrg and testing data sets
as in the case of the first experiment.

The resulting fuzzy system contained 19 rules,taedvalue of the performance
index was RMSE=0.6600 in case of the training daih RMSE=0.6749 in case
of the testing data.

5 Conclusions

The experimental results showed that the presentttiod was able to produce
a low complexity sparse rule base in both casesveder, the approximation
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capability of the resulting systems was slightlyrgsenthan the results obtained
using the default set shape and hill climbing apphobased technique published
in [7].
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generaldsa szabalybazis kiterjesztés és lokalis kalen

keresés segitségével

Johanydk Zsolt Csaba —d#hazi-Kiss Ambrus
Osszefoglald

A ritka fuzzy szabdalybazisok alkalmazasa lékétteszi a rajuk épéilfuzzy
rendszerek komplexitdsanak valamint memodriaigéryénesokkentését.
Mintaadatok alapjan torténlétrehozasuk kétsf feladatot foglal magaba, a
szerkezet definialdsat és a paraméterek beazasatsita

Cikkinkben egy 0j modszert ismertetlink ezen fetddategoldasaként, amely
két kezd szabaly létrehozasat kdgeh inkrementalisandviti a szabalybazist.
Minden Uj szabaly beillesztése utan a rendszemp@exeinek kvazi-optimalis
értékeit egy lokdlis kbzvetlen keresési eljarastségével allapitjuk meg.

Fuzzy Regelbasenherstellung durch RBE und eine dikée
Suchmethode

Johanyak, Zsolt Csaba —d#azi-Kiss, Ambrus
Zusammenfassung

Diunnbesetzte Fuzzy Regelbasen sichern die geritogeplexitat und geringen
Speicherbedarf der Fuzzy-Systeme. lhre Herstellwoyn Sample-Daten
beinhaltet im Wesentlichen zwei Aufgaben, namligh Definition der Struktur
und die Identifikation der Parameter.

In diesem Beitrag stellen wir eine neuartige Methodie mit zwei Regeln
beginnt und schrittweise schafft neue Regeln, d&amametern werden durch
eine direkte Suchmethode identifiziert.
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